Customization of IBM Intu’s Voice by Connecting Text-to-Speech Services with a Voice Conversion Network

Jongyoon Song1
Jaekoo Lee1
Hyunjae Kim1
Euishin Choi2
Minseok Kim2
Sungroh Yoon1

1ECE, Seoul National University
2IBM Korea

Outline

- Introduction
- Related Work
 - IBM Watson and Project Intu
 - Text-to-speech (TTS)
 - Voice conversion
- Model Description
 - Voice conversion network (VCN)
 - Intu
- Experiments and Discussion
- Conclusion
Outline

- Introduction
- Related Work
 - IBM Watson and Project Intu
 - Text-to-speech (TTS)
 - Voice conversion
- Model Description
 - Voice conversion network (VCN)
 - Intu
- Experiments and Discussion
- Conclusion
Introduction

- Intelligent Personal Assistant
- Artificial Intelligence Speaker

- Amazon Echo [1]
- Google Home [2]
- Apple Siri [3]
Preset voice
Customized voice
Customized voice

Voice customization = easy for users to train
Customized voice

Voice customization
= easy for users to train

Our design
- Small target speech data
- No parallel data
Introduction

1. Gather 10~ min of speech of preferred voice

2. Send to Intu to train voice customization module

3. Users can talk with AI speaker with customized voice
Introduction

- **Text-to-speech (TTS)**
 - Text: *linguistic* & phonetic feature
 - Speech: phonetic & *acoustic* feature
 - Requires relatively complex model
 - Needs around 30 min of speech per voice [4]

- **Voice conversion**
 - Inputs and outputs have same feature domain
 - Requires relatively simple model
 - Needs around 10 min of speech per voice [5]
Introduction

Pre-trained using public speech data + Trained using 10~ min of target speech
• **Source speaker/speech**
The speaker of voice before conversion / the speaker’s speech

• **Target speaker/speech**
The speaker whom the user prefers / the speaker’s speech
Introduction

Contribution

• Voice customization for ML-as-a-Service design

• Methods for inference time optimization

• Analysis for proper amount of target speech
Outline

- Introduction
- Related Work
 - IBM Watson and Project Intu
 - Text-to-speech (TTS)
 - Voice conversion
- Model Description
 - Voice conversion network (VCN)
 - Intu
- Experiments and Discussion
- Conclusion
Related Work – IBM Watson and Project Intu

- **IBM Watson**: API service for cognitive task
 - Conversation
 - Text-to-speech
 - Language translator

- **Project Intu**: A platform for intelligent personal assistant service
Related Work – Text-to-speech

Unit selection

Decision tree [7]

Recurrent Neural Network (RNN)
- IBM Watson’s text-to-speech [8]

Hidden Markov model [9]

Dilated convolution neural network
- WaveNet [4]
- Recurrent Neural Network (RNN)
- Deep Voice [10]
Related Work – Voice conversion

Training data

One-to-one w/ parallel data

Many-to-one w/ parallel data

Many-to-one w/o parallel data

Model

Codebook [11]

Gaussian mixture model [12]

Boltzmann machine [13]

Deep belief network [14]

RNN [5]

Lifa Sun et al., 2016 [5]

- Multi-layer bidirectional RNN is used
- Both input & output are from target speech
 ⇒ No parallel data and alignment issue
Outline

• Introduction
• Related Work
 • IBM Watson and Project Intu
 • Text-to-speech (TTS)
 • Voice conversion
• Model Description
 • Voice conversion network (VCN)
 • Intu
• Experiments and Discussion
• Conclusion
Model Description – Voice conversion network (VCN)

- Overall structure of VCN

- Training step
 - Stage I : raw wave \rightarrow linguistic feature
 - Stage II : linguistic feature \rightarrow target speaker’s acoustic feature
Model Description – Voice conversion network (VCN)

- Overall structure of VCN

- Inferring step
 - Stage III: source speech → target speech
Model Description – Voice conversion network (VCN)

- **Stage I**

 Raw wave \rightarrow speaker-independent linguistic feature

- **Mel-frequency cepstral coefficients (MFCCs)**

 - A kind of speech’s acoustic feature representation

 - Energy of each filter bank on mel-scale
Model Description – Voice conversion network (VCN)

• Stage I

 Raw wave → speaker-independent linguistic feature

• Feature-based Maximum Likelihood Linear Regression (fMLLR)
 • Speaker adaptation method transforming speech’s feature vector x [15]
 • Finds affine transformation weight W maximizing likelihood of the speech
Model Description – Voice conversion network (VCN)

- **Stage I**
 - Raw wave → speaker-independent linguistic feature

- **Phonetic Class Posterior Probabilities (PPPs)**
 - Probabilities of phonetic class for each piece of speech
 - *Phoneme*’s representation is limited
 - The number of class of *triphone* is too large
 - *Senone* is cluster of triphones which are similar

Cat

Phoneme: k, $æ$, t

Triphone: /$kæt$/
Model Description – Voice conversion network (VCN)

• **Stage I**

Raw wave → speaker-independent linguistic feature

• TIMIT corpus [20] is used
• MFCC, fMLLR and PPP are mapped using Kaldi toolkit [16]
• Speaker-independent auto speech recognizer (SI-ASR) maps MFCC (acoustic) feature to PPP (linguistic) feature
Model Description – Voice conversion network (VCN)

Stage II

- **Deep bidirectional long short-term memory (DBLSTM)**
 - Multi-layer recurrent neural network with LSTM cell
 - It consists of forward and backward directional LSTM

SI-phonetic feature \rightarrow acoustic feature of target speaker
Model Description – Voice conversion network (VCN)

- **Stage II**

 - Mel-cepstral Coefficients (MCEPs)
 - Another feature representation of speech
 - Mel-cepstrum analysis of spectrum $H(z)$ to find coefficients $c_\alpha(m)$ [17]

 - SI-phonetic feature → acoustic feature of target speaker
Model Description – Voice conversion network (VCN)

- **Stage II**

 - Only requires target speech to achieve input and label
 - **Deep bidirectional LSTM model** (DBLSTM) is used to map PPP (linguistic) feature to target speech’s MCEP (acoustic) feature

SI-phonetic feature → acoustic feature of target speaker
Model Description – Voice conversion network (VCN)

- **Stage III**

- **Fundamental Frequency (Fo)**
 - Lowest frequency of a periodic waveform [18]
 - It is related with pitch of voice

Acoustic feature → raw wave of target speech
Model Description – Voice conversion network (VCN)

- **Stage III**
 - **Aperiodicity Component (AC)**
 - Non-periodic features of speech
 - It contains details of speech

Acoustic feature → raw wave of target speech
Model Description – Voice conversion network (VCN)

- **Stage III**

 - Whole model is achieved by pipelining the models of previous stages
 - STRAIGHT vocoder [19] is used to convert acoustic features to raw wave

Acoustic feature → raw wave of target speech
Model Description – Intu

- Intu structure: echoing model

1. **MIC** input speech
2. (Text extractor) speech to text
3. (Echo agent) change the type
4. (WinSpeech gesture) text to speech
5. (Voice conversion (VCN))
6. (SPK) output speech

User’s speech → (Intu voice’s speech) → target voice’s speech
Outline

• Introduction
• Related Work
 • IBM Watson and Project Intu
 • Text-to-speech (TTS)
 • Voice conversion
• Model Description
 • Voice conversion network (VCN)
 • Intu
• Experiments and Discussion
• Conclusion
Experiments and Discussion

Two experiments

1. Additional \textbf{time} measurement

2. Varying \textbf{size} of the target speech samples
Experiments and Discussion

• Additional time measurement

Results - w.r.t step

Results - w.r.t task

Feature extraction is a major factor of time delay
Experiments and Discussion

- Additional time measurement

Main proposal 1 – Parallel processing
← SI-ASR and DBLSTM processes are independent of early process of vocoder
Experiments and Discussion

• Additional time measurement

Main proposal 2 – Extracting feature of Intu’s voice in advance
← IBM Watson TTS follows unit selection method
Experiments and Discussion

- Additional time measurement

80.7% time reduction
Varying the size of target speech samples

- **Mel-cepstral distortion (MCD)**

 MCEP distance between original & reconstructed target speech [5]

 \[
 MCD(dB) = \frac{10}{\ln 10} \sqrt{2 \sum_{d=1}^{D} (c_d - c_d^{converted})^2}
 \]

```
Target speech  ----> VCN  ----> Reconstructed (target) speech
```

\[\oplus\]
Experiments and Discussion

Varying the size of target speech samples

- **Mel-cepstral distortion (MCD)**

 MCEP distance between original & reconstructed target speech [5]

 \[
 MCD(dB) = \frac{10}{\ln 10} \sqrt{\frac{2}{D} \sum_{d=1}^{D} (c_d - c_{d^\text{converted}})^2}
 \]

 High MCD

 Low MCD
Experiments and Discussion

- Varying the size of target speech samples

MCD for training set

MCD for validation set

\[\therefore 100+ \text{ of target speech samples avoid overfitting} \]

\[= 10\sim \text{ min of target speech} \]
Outline

• Introduction
• Related Work
 • IBM Watson and Project Intu
 • Text-to-speech (TTS)
 • Voice conversion
• Model Description
 • Voice conversion network (VCN)
 • Intu
• Experiments and Discussion
• Conclusion
Conclusion

- TTS + VCN is suitable for voice customization service
- Parallel & pre-processing for optimization of inference time
- Our design requires user 10~ min of target speech
Acknowledgements

• Members of our laboratory

A picture with my advisor, his advisor (my academic grandpa), and lab members
Data Science & Artificial Intelligence Laboratory
(http://ailab.snu.ac.kr)

• Researchers in IBM Korea
Reference

