"Breaking Bad: De-Anonymising Entity Types on the Bitcoin Blockchain Using Supervised Machine Learning "

HICSS–51, January 2018 Internet and the Digital Economy Distributed Ledger Technology: The Blockchain Minitrack

> Mikkel Alexander Harlev Haohua Sun Yin Klaus Christian Langenheldt Raghava Rao Mukkamala Ravi Vatrapu

About Me

Haohua (**Awa**) Sun Yin

Academic Background & Current Position

BSc. in Business & Statistics

MSc. in Information Systems

Data Scientist at Chainalysis, spec. in ML/DL & Blockchain

Research director at the Interchain Foundation*

Research Areas of Interest

Application of **ML/DL** to Blockchain data for clustering, de-anonymization, etc.

2nd and 3rd Generation Blockchains: Ethereum, Cøsmos*

Privacy Coins & Cryptography: Monero, ZCash

Adoption of Cryptocurrencies

2.9 to 5.8 million unique users (mostly Bitcoin), and increasing

Accepted as a payment method by over 100,000 merchants (~2014)

Affiliation with Illicit Activities

Used for: Money laundering, scamming, terror financing

Used as payment method for: cyber-extortion (ransom payments), thievery, trading illegal goods in the Darknet

Need for Investigation & Compliance Tools

Businesses: Required by AML and KYC regulations, need tools to assess the risk of each of their customers

Law Enforcement: Need for domain specific analysis and investigation tools

2

3

To what extent can we predict the category of a yet-unidentified cluster on the Bitcoin Blockchain?

12c6DSiU4Rq3P4ZxziKxzrL5LmMBrzjrJX Category: Unknown 1DGoMT2uz6Dg59JbwtDSp8KyjiTPR7RnV Category: Unknown

B13HjAyJyAX6SYc6hrEqLf4naoKCWdeS 1FaEn6fGeDfDkHZvvSLsVRVxqgQt95JeyD 1JQFWqx9VFMagd8UryqiJriLmCvCuJLyf5 1PxoZtvm3sb6LnYS5iNERuJBNR5oQZxuXJ 1K4EqXxSVd6NndkmVAMsSBd1n8VJNJLwr2

Category: Personal Wallet

Category: Exchange

The Bitcoin Network I

The Bitcoin Network II

5a

Dataset Description

- 434 Observations
- 10 categories
- + 200 M transactions
- Period: January 2009 May 2017

Results

ROC Curve and Classification Report from Gradient Boosted Trees classifier, average confidence of 77%

Category	Precision	Recall	F1-score	Support
Exchange	0.79	0.94	0.86	201
Gambling	0.74	0.83	0.78	89
Hosted Wallet	0.25	0.11	0.15	9
Merchant Services	0.00	0.00	0.00	13
Mining Pool	0.96	0.84	0.90	31
Mixing	0.50	0.25	0.33	4
Other	0.43	0.15	0.22	20
Ransomware	0.91	0.77	0.83	13
Scam	0.68	0.59	0.63	22
Tor Market	0.79	0.59	0.68	32
Avg / Total	0.74	0.77	0.75	434

Implications

It is possible to categorize unidentified

clusters on Bitcoin using supervised

learning

- Further challenging Bitcoin's true level of anonymity
- Applicability to compliance, investigation tools

Limitations

- Dataset limited to 434 observations
- Low performance with under-sampled categories
- Features not reflecting all available data
- Lack of test set

Multiclass Classification on the Bitcoin Blockchain

Goal: Predict the category of unidentified clusters

Methodology: Using a dataset of already identified clusters (a total of 434 observations across 10 categories)

Results: It is possible to classify with a confidence of 77% using Gradient Boosted Trees

Implications of the Research

A degree of de-anonymization can be achieved using this approach

Considering the limitations: Paving the way for future research

Expanding the Dataset of Identified Clusters

Number of observations per category

Number of categories

Refining & Testing Alternative Methodologies

Automatic feature engineering and extraction

Testing more classification algorithms

Binary Classification

Applying the Model

Use the tested methodology to uncover the Bitcoin Blockchain for multiple purposes: cybercrime investigations, compliance tools, etc.

7a

Future Research

Haohua Sun Yin & Ravi Vatrapu, *A First Estimation of the Proportion of Cybercriminal Entities in the Bitcoin Ecosystem using Supervised Machine Learning*, IEEE Big Data for Cybercrime Prevention, 2017, Boston MA

Proposed Questions

- How can we increase the dataset in both number of observations and categories?
- If Bitcoin is not truly anonymous, why has it been used for nefarious activities?
- Are there alternatives to Bitcoin that offer higher privacy?