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Sentiment Classification with
Recurrent Neural Network (RNN)
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RNNs are slow…

• RNNs cannot be parallelized over time
• Time complexity is linear in the length of sequence.
• GPUs cannot take full advantage of parallelization.
• Recent works to overcome slow RNNs: Google’s Transformer (2017), 

Facebook’s CNN-based MT (2017).



RNNs are slow…

• RNNs cannot be parallelized over time
• Time complexity is linear in the length of sequence.
• GPUs cannot take full advantage of parallelization.
• Recent works to overcome slow RNNs: Google’s Transformer (2017), 

Facebook’s CNN-based MT (2017).

• CPUs are not great for RNNs either
• Neural networks require so many computations.



(very rough) FLOP Complexity of RNN

• Hidden state size = d (= input size)

• !"#$ = &(( ) )" +( ! !" + +)

• Total number of operations:  3d + 2d2

• If d is sufficiently large, matrix multiplication is the bottleneck.
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Can we improve inference speed on CPUs?

• CPUs are often more desirable options for production
• Small devices (often CPU-only)
• Latency-critical applications
• CPUs can have lower latency.



How do humans ‘speed-read’?

• Speed readers skim unimportant parts and fully read important text 
(Just and Carpenter, 1987).



How do humans ‘speed-read’?

• Speed readers skim unimportant parts and fully read important text 
(Just and Carpenter, 1987).

• ‘Reading’ is similar to matrix multiplication in RNN.
• Skim: use small matrix multiplication.
• Fully read: use big matrix multiplication. 
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Skim-RNN
• Consists of two RNNs:
• Big RNN: hidden state size = d
• Small RNN: hidden state size = d’
• d >> d’ (e.g. d=100, d’=5)
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Skim-RNN
• Consists of two RNNs:
• Big RNN: hidden state size = d
• Small RNN: hidden state size = d’
• d >> d’ (e.g. d=100, d’=5)

• Hidden state is shared between the RNNs.

• Big RNN updates the entire hidden state.

• Small RNN updates only a small portion of the hidden state.

• When using small RNN, the inference requires smaller # of FLOP.
• O(d2) >> O(d’d)

• Dynamically makes decision on which size of RNN to use



How to train?

• Decisions (which RNN to use) are so non-differentiable

• Policy gradient (Williams, 1992)
• REINFORCE
• Unbiased estimation
• High variance; hard to train

• Gumbel-softmax (Jang et al., 2017)
• Biased estimation
• Low variance; good empirical results
• Fully differentiable during training via reparameterization



Gumbel-softmax Reparameterization

• Start with soft decision (attention) p

• Slowly decrease temperature (!), making the distribution more 
discrete
• Sampling with the attention weights (r) approximate true distribution
• Reparameterization (g) allows differentiation with stochasticity



LSTM-Jump (Yu et al., 2017)

• Orthogonal
• Skipping: you decide to skip next words / sentences before reading at all.
• Skimming: you use very small RNN to read unimportant words fast.
• Both can be combined.

• Concurrent work



LSTM-Jump (Yu et al., 2017)

• Orthogonal
• Skipping: you decide to skip next words / sentences before reading at all.
• Skimming: you use very small RNN to read unimportant words fast.
• Both can be combined.

• Concurrent work
• Skim-RNN has output for every time step
• Useful for applications that need output every time.
• Easy to replace existing RNNs.

• LSTM-Jump has GPU advantage



Classification Results



Question Answering Results



Comparing F1 & FLOP across diff configs.
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Visualization on 
IMDb Sentiment Classification

*Black words are skimmed (small RNN), blue words are fully read.



Visualization on
Stanford Question Answering Dataset

*Black words are skimmed (small RNN), blue words are fully read.



Layer-wise Skim Visualization (SQuAD)
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Most RNN steps at higher layer is redundant!



Dynamically controlling # of FLOP
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Stability of Pretraining
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FLOP = Speed?

• On GPU: empirically NO
• On CPU: conditionally YES, with low-level programming



TensorFlow or PyTorch?

• NumPy is faster for small matrices
• On CPUs (NumPy has no GPU compatibility)
• Batch size = 1 (latency, not throughput)
• d < 220 for TensorFlow
• d < 700 for PyTorch

• TensorFlow and PyTorch seem to have more overheads
• All benchmarks are based on NumPy



Theoretical and 
Actual Speed 
Gains on 
NumPy



Conclusion

• Skim-RNN: switching between two different-size RNNs with shared 
hidden state.
• Can be generalized to multiple RNNs.

• Speed gain can be substantial.
• More beneficial with larger hidden state size.
• Especially useful for latency.
• To get throughput advantage, will need to go low-level.



Future Work

• Using multiple granularities of RNNs (not just two)
• Extension to latency-critical applications
• Speech
• Video

• Low-level implementation



Thanks!

• http://seominjoon.github.io
• minjoon.seo@

http://seominjoon.github.io/

