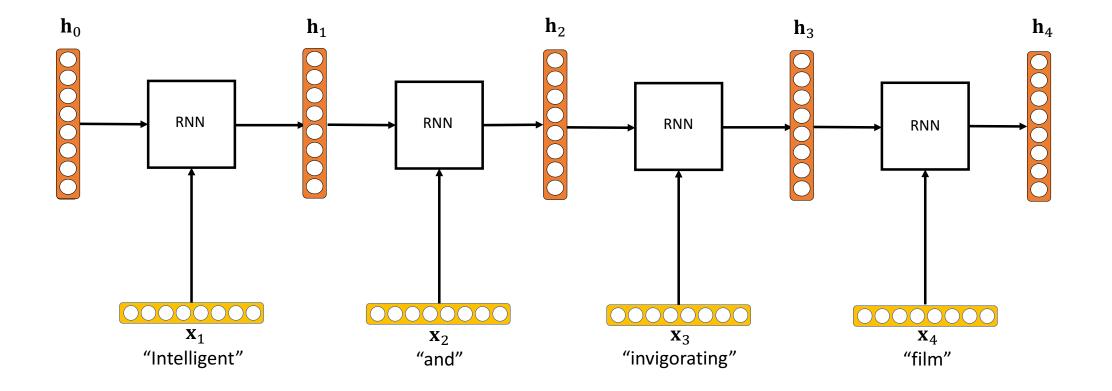
Neural Speed Reading

Minjoon Seo^{1,2*}, Sewon Min^{3*}, Ali Farhadi^{2,4,5}, Hannaneh Hajishirzi² NAVER Clova¹, University of Washington², Seoul National University³, Allen Institute for Al⁴, XNOR.Al⁵ Feb 15, 2018 * denotes equal contribution.

Sentiment Classification with Recurrent Neural Network (RNN)



RNNs are slow...

- RNNs cannot be parallelized over time
 - Time complexity is linear in the length of sequence.
 - GPUs cannot take full advantage of parallelization.
 - Recent works to overcome slow RNNs: Google's Transformer (2017), Facebook's CNN-based MT (2017).

RNNs are slow...

- RNNs cannot be parallelized over time
 - Time complexity is linear in the length of sequence.
 - GPUs cannot take full advantage of parallelization.
 - Recent works to overcome slow RNNs: Google's Transformer (2017), Facebook's CNN-based MT (2017).
- CPUs are not great for RNNs either
 - Neural networks require so many computations.

(very rough) FLOP Complexity of RNN

• Hidden state size = *d* (= input size)

•
$$\mathbf{h}_{t+1} = \sigma(\mathbf{W}^{(\mathbf{x})}\mathbf{x}_t + \mathbf{W}^{(\mathbf{h})}\mathbf{h}_t + \mathbf{b})$$

 $d^2 \qquad d^2$

- Total number of operations: $3d + 2d^2$
- If *d* is sufficiently large, **matrix multiplication** is the bottleneck.

Can we improve inference speed on CPUs?

- CPUs are often more desirable options for production
- Small devices (often CPU-only)
- Latency-critical applications
 - CPUs can have lower latency.

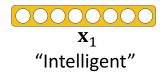
How do humans 'speed-read'?

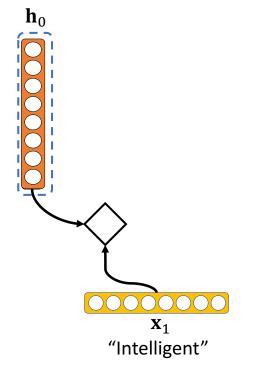
• Speed readers **skim** unimportant parts and **fully read** important text (Just and Carpenter, 1987).

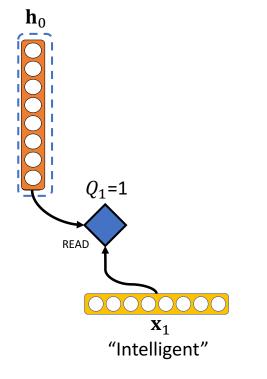
How do humans 'speed-read'?

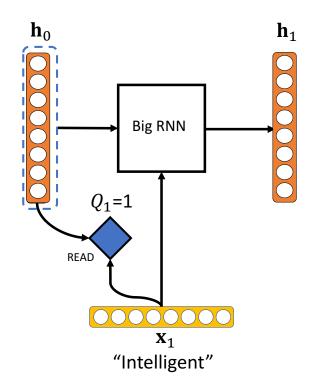
- Speed readers **skim** unimportant parts and **fully read** important text (Just and Carpenter, 1987).
- 'Reading' is similar to *matrix multiplication* in RNN.
 - **Skim**: use small matrix multiplication.
 - Fully read: use big matrix multiplication.

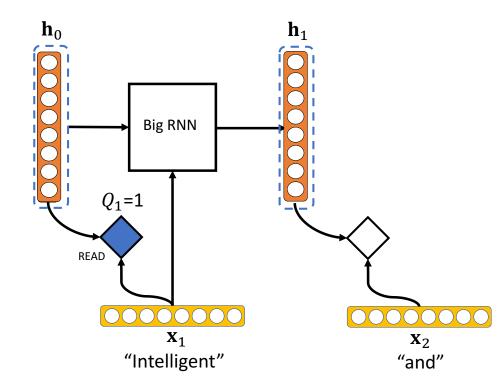
h₀

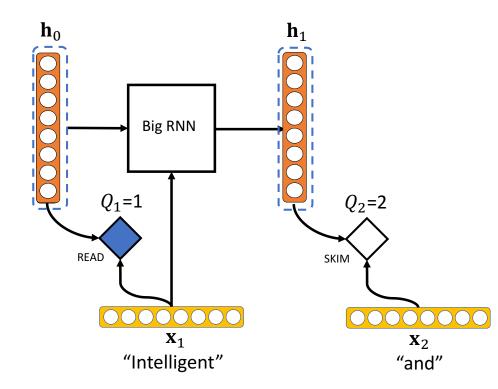


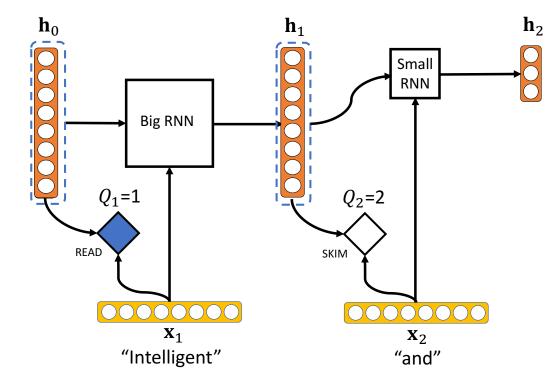


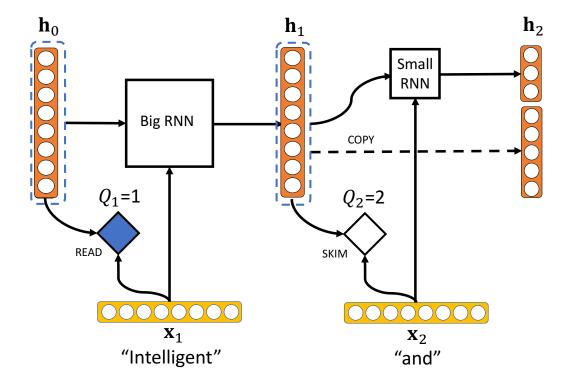


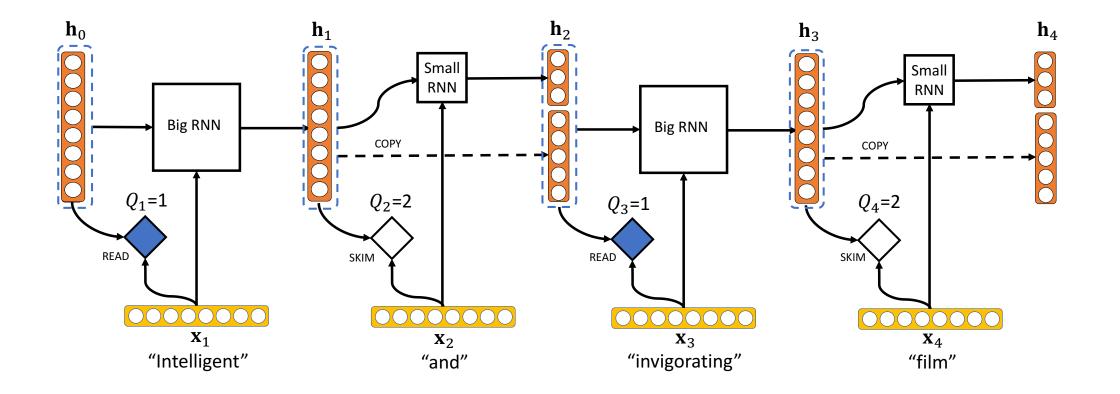












Skim-RNN

- Consists of two RNNs:
 - **Big RNN**: hidden state size = *d*
 - **Small RNN**: hidden state size = d'
 - *d* >> *d'* (e.g. *d*=100, *d'*=5)

Skim-RNN

- Consists of two RNNs:
 - **Big RNN**: hidden state size = *d*
 - **Small RNN**: hidden state size = d'
 - *d* >> *d'* (e.g. *d*=100, *d'*=5)
- Hidden state is shared between the RNNs.
- Big RNN updates the entire hidden state.
- Small RNN updates only a small portion of the hidden state.

Skim-RNN

- Consists of two RNNs:
 - **Big RNN**: hidden state size = *d*
 - **Small RNN**: hidden state size = d'
 - *d* >> *d'* (e.g. *d*=100, *d'*=5)
- Hidden state is shared between the RNNs.
- Big RNN updates the entire hidden state.
- Small RNN updates only a small portion of the hidden state.
- When using *small* RNN, the inference requires smaller # of FLOP.
 - $O(d^2) >> O(d'd)$
- Dynamically makes decision on which size of RNN to use

How to train?

- Decisions (which RNN to use) are so non-differentiable
- Policy gradient (Williams, 1992)
 - REINFORCE
 - Unbiased estimation
 - High variance; hard to train
- Gumbel-softmax (Jang et al., 2017)
 - Biased estimation
 - Low variance; good empirical results
 - Fully differentiable during training via reparameterization

Gumbel-softmax Reparameterization

Start with soft decision (attention) p

$$\mathbf{r}_t^i = \frac{\exp((\log(\mathbf{p}_t^i) + g_t^i)/\tau)}{\sum_j \exp((\log(\mathbf{p}_t^j) + g_t^j)/\tau)} \qquad \mathbf{h}_t = \sum_i \mathbf{r}_t^i \tilde{\mathbf{h}}_t^i$$

- Slowly decrease temperature (τ), making the distribution more discrete
- Sampling with the attention weights (r) approximate true distribution
- Reparameterization (g) allows differentiation with stochasticity

LSTM-Jump (Yu et al., 2017)

- Orthogonal
 - *Skipping*: you decide to skip next words / sentences before reading at all.
 - *Skimming*: you use very small RNN to read unimportant words fast.
 - Both can be combined.
- Concurrent work

LSTM-Jump (Yu et al., 2017)

- Orthogonal
 - *Skipping*: you decide to skip next words / sentences before reading at all.
 - Skimming: you use very small RNN to read unimportant words fast.
 - Both can be combined.
- Concurrent work
- Skim-RNN has output for every time step
 - Useful for applications that need output every time.
 - Easy to replace existing RNNs.
- LSTM-Jump has GPU advantage

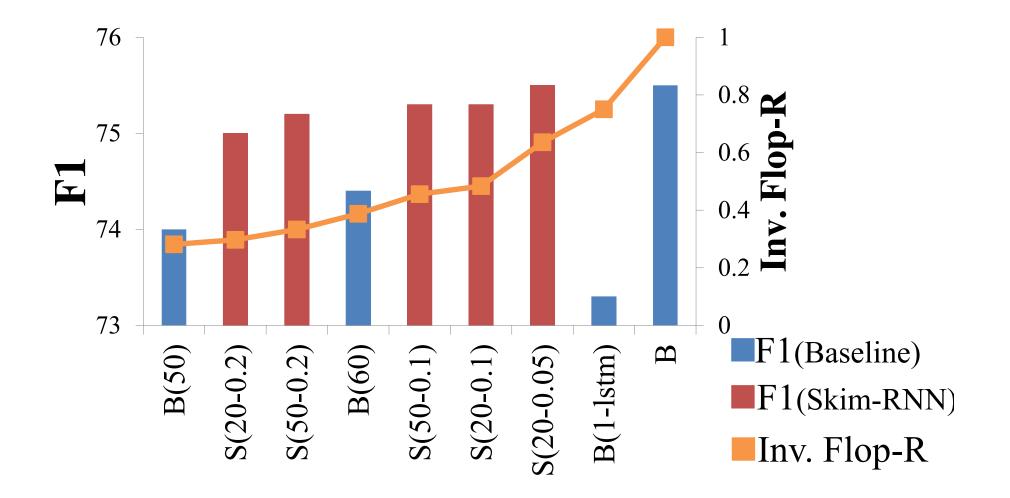
Classification Results

LSTM		SST			Rotten Tomatoes			IMDb			AGNews						
Model	d' / γ	Acc	Sk	Flop-r	Sp	Acc	Sk	Flop-r	Sp	Acc	Sk	Flop-r	Sp	Acc	Sk	Flop-r	Sp
Standard		86.4	-	1.0x	1.0x	82.5	-	1.0x	1.0x	91.1	-	1.0x	1.0x	93.5	-	1.0x	1.0x
Skim	5/0.01	86.4	58.2	2.4x	1.4x	84.2	52.0	2.1x	1.3x	89.3	79.2	4.7x	2.1x	93.6	30.3	1.4x	1.0x
Skim	10/0.01	85.8	61.1	2.5x	1.5x	82.5	58.5	2.4x	1.4x	91.2	83.9	5.8x	2.3x	93.5	33.7	1.5x	1.0x
Skim	5/0.02	85.6	62.3	2.6x	1.5x	81.8	63.7	2.7x	1.5x	88.7	63.2	2.7x	1.5x	93.3	36.4	1.6x	1.0x
Skim	10/0.02	86.4	68.0	3.0x	1.7x	82.5	63.0	2.6x	1.5x	90.9	90.7	9.5x	2.7x	92.5	10.6	1.1x	0.8x
LSTM	Jump	-	-	-	-	79.3	-	-	1.6x	89.4	-	-	1.6x	89.3	-	-	1.1x
SO	ГA	89.5	-	-	-	83.4	-	-	-	94.1	-	-	-	93.4	-	-	-

Question Answering Results

Model	γ	F1	EM	Sk	Flop-r
LSTM+Att (1 layer)	-	73.3	63.9	-	1.3x
LSTM+Att $(d = 50)$	-	74.0	64.4	-	3.6x
LSTM+Att	-	75.5	67.0	-	1.0x
Sk-LSTM+Att ($d' = 0$)	0.1	75.7	66.7	37.7	1.4x
Sk-LSTM+Att ($d' = 0$)	0.2	75.6	66.4	49.7	1.6x
Sk-LSTM+Att	0.05	75.5	66.0	39.7	1.4x
Sk-LTM+Att	0.1	75.3	66.0	56.2	1.7x
Sk-LSTM+Att	0.2	75.0	66.0	76.4	2.3x
BiDAF $(d = 30)$	-	74.6	64.0	-	9.1x
BiDAF $(d = 50)$	-	75.7	65.5	-	3.7x
BiDAF	-	77.3	67.7	-	1.0x
Sk-BiDAF	0.01	76.9	67.0	74.5	2.8x
Sk-BiDAF	0.001	77.1	67.4	47.1	1.7x
SOTA (Wang et al., 20	79.5	71.1	-	-	

Comparing F1 & FLOP across diff configs.



Visualization on IMDb Sentiment Classification

	I liked this movie, not because Tom Selleck was in it, but because it was a good story about baseball
Positive	and it also had a semi-over dramatized view of some of the issues that a BASEBALL player coming
	to the end of their time in Major League sports must face. I also greatly enjoyed the cultural differen-
	ces in American and Japanese baseball and the small facts on how the games are played differently.
	Overall , it is a good movie to watch on Cable TV or rent on a cold winter's night and watch about
	the "Dog Day's" of summer and know that spring training is only a few months away. A good movie
	for a baseball fan as well as a good "DATE" movie. Trust me on that one! *Wink*
Negative	No! no - No - NO! My entire being is revolting against this dreadful remake of a classic movie.
	I knew we were heading for trouble from the moment Meg Ryan appeared on screen with her ridi-
	culous hair and clothing - literally looking like a scarecrow in that garden she was digging. Meg
	Ryan playing Meg Ryan - how tiresome is that?! And it got worse so much worse. The horribly
	cliché lines, the stock characters, the increasing sense I was watching a spin-off of "The First Wives
	Club" and the ultimate hackneyed schtick in the delivery room. How many times have I seen this
	movie? Only once, but it feel like a dozen times - nothing original or fresh about it. For shame!

*Black words are skimmed (small RNN), blue words are fully read.

Visualization on Stanford Question Answering Dataset

 Q
 What is one straightforward case of a probabilistic test?

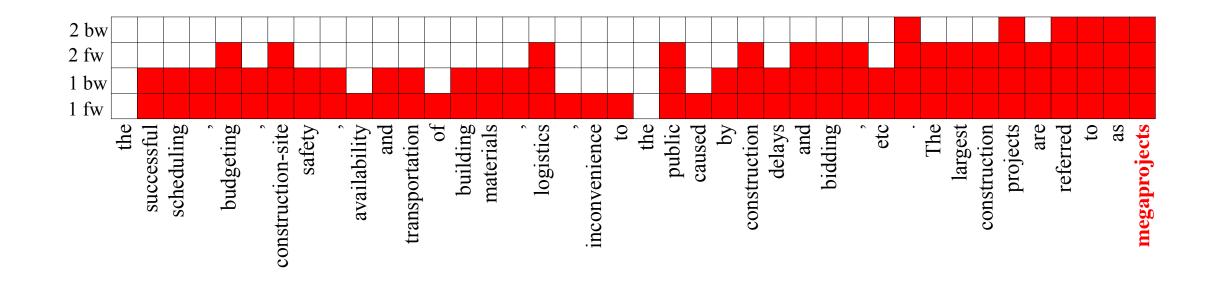
 A particularly simple example of a probabilistic test is the Fermat primality test, which relies on the fact (Fermat's little theorem)

that $np \equiv n \pmod{p}$ for any n if p is a prime number. If you have a number **b** that we want to **test** for **primality**, then we work out nb (**mod** b) for a random value of n as our **test**. A **flaw** with this **test** is that there are some composite numbers (the **Carmichael**

C numbers) that satisfy the **Fermat** identity even though they are not prime, so the **test** has no way of distinguishing between prime numbers and Carmichael numbers. **Carmichael** numbers are substantially rarer than prime numbers, though, so this **test** can be useful for practical purposes. More powerful extensions of the **Fermat primality test**, such as Baillie-PSW, Miller-Rabin, and Solovay-Strassen **tests**, are guaranteed to fail at least some of the time when applied to a composite number.

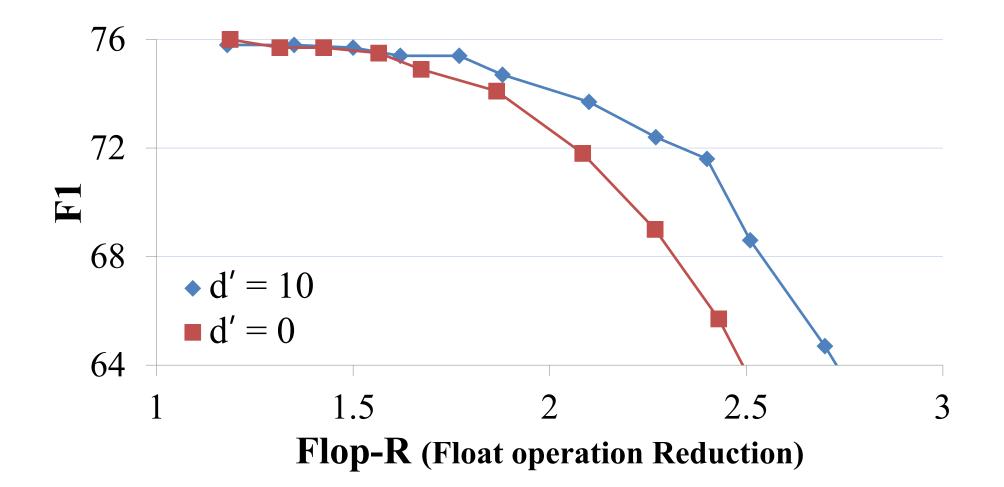
*Black words are skimmed (small RNN), blue words are fully read.

Layer-wise Skim Visualization (SQuAD)

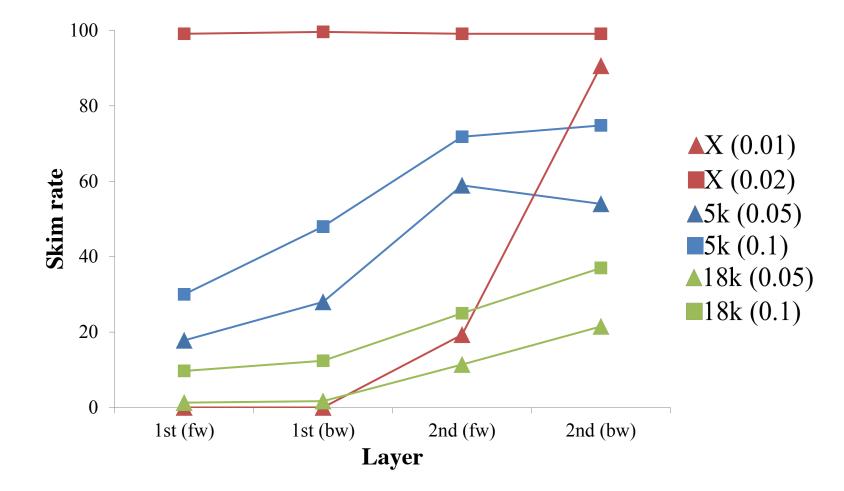


Most RNN steps at higher layer is redundant!

Dynamically controlling # of FLOP



Stability of Pretraining



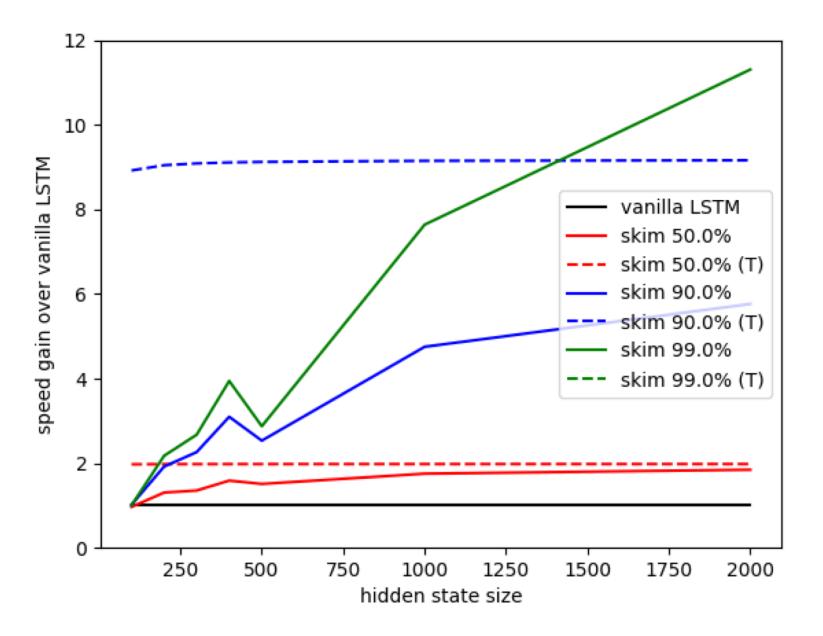
FLOP = Speed?

- On GPU: empirically NO
- On CPU: conditionally YES, with low-level programming

TensorFlow or PyTorch?

- NumPy is faster for small matrices
 - On CPUs (NumPy has no GPU compatibility)
 - Batch size = 1 (latency, not throughput)
 - *d* < 220 for TensorFlow
 - *d* < 700 for PyTorch
- TensorFlow and PyTorch seem to have more overheads
- All benchmarks are based on NumPy

Theoretical and Actual Speed Gains on NumPy



Conclusion

- **Skim-RNN**: switching between two different-size RNNs with shared hidden state.
 - Can be generalized to multiple RNNs.
- Speed gain can be substantial.
- More beneficial with larger hidden state size.
- Especially useful for latency.
 - To get throughput advantage, will need to go low-level.

Future Work

- Using multiple granularities of RNNs (not just two)
- Extension to latency-critical applications
 - Speech
 - Video
- Low-level implementation

Thanks!

- http://seominjoon.github.io
- minjoon.seo@