
Neural Speed Reading
Minjoon Seo1,2*, Sewon Min3*, Ali Farhadi2,4,5, Hannaneh Hajishirzi2
NAVER Clova1, University of Washington2, Seoul National University3,

Allen Institute for AI4, XNOR.AI5

Feb 15, 2018
* denotes equal contribution.

UWNLP

Sentiment Classification with
Recurrent Neural Network (RNN)

RNN RNN

!"

#" #$ #%#&

!& !%!$!'

“Intelligent” “and” “invigorating” “film”

RNN RNN

RNNs are slow…

• RNNs cannot be parallelized over time
• Time complexity is linear in the length of sequence.
• GPUs cannot take full advantage of parallelization.
• Recent works to overcome slow RNNs: Google’s Transformer (2017),

Facebook’s CNN-based MT (2017).

RNNs are slow…

• RNNs cannot be parallelized over time
• Time complexity is linear in the length of sequence.
• GPUs cannot take full advantage of parallelization.
• Recent works to overcome slow RNNs: Google’s Transformer (2017),

Facebook’s CNN-based MT (2017).

• CPUs are not great for RNNs either
• Neural networks require so many computations.

(very rough) FLOP Complexity of RNN

• Hidden state size = d (= input size)

• !"#$ = &(())" +(! !" + +)

• Total number of operations: 3d + 2d2

• If d is sufficiently large, matrix multiplication is the bottleneck.

d2d2

d dd

Can we improve inference speed on CPUs?

• CPUs are often more desirable options for production
• Small devices (often CPU-only)
• Latency-critical applications
• CPUs can have lower latency.

How do humans ‘speed-read’?

• Speed readers skim unimportant parts and fully read important text
(Just and Carpenter, 1987).

How do humans ‘speed-read’?

• Speed readers skim unimportant parts and fully read important text
(Just and Carpenter, 1987).

• ‘Reading’ is similar to matrix multiplication in RNN.
• Skim: use small matrix multiplication.
• Fully read: use big matrix multiplication.

Sentiment Classification with
Skim-RNN

!"

#$

“Intelligent”

Sentiment Classification with
Skim-RNN

!"

#$

“Intelligent”

Sentiment Classification with
Skim-RNN

READ

!"

#$

“Intelligent”

%"=1

Sentiment Classification with
Skim-RNN

Big	RNN

READ

!"

#"#$

“Intelligent”

%"=1

Sentiment Classification with
Skim-RNN

Big	RNN

READ

!"!#

$#$%

“Intelligent” “and”

&#=1

Sentiment Classification with
Skim-RNN

Big	RNN

READ SKIM

!"!#

$#$%

“Intelligent” “and”

&#=1 &"=2

Sentiment Classification with
Skim-RNN

Big	RNN

Small
RNN

READ SKIM

!"

#"#$

!$!%

“Intelligent” “and”

&$=1 &"=2

Sentiment Classification with
Skim-RNN

Big	RNN

Small
RNN

COPY

READ SKIM

!"

#"#$

!$!%

“Intelligent” “and”

&$=1 &"=2

Sentiment Classification with
Skim-RNN

Big	RNN

Small
RNN

COPY

READ SKIM

Big	RNN

Small
RNN

COPY

READ SKIM

!"

#" #$ #%#&

!& !%!$!'

“Intelligent” “and” “invigorating” “film”

(&=1 ("=2 ($=1 (%=2

Skim-RNN
• Consists of two RNNs:
• Big RNN: hidden state size = d
• Small RNN: hidden state size = d’
• d >> d’ (e.g. d=100, d’=5)

Skim-RNN
• Consists of two RNNs:
• Big RNN: hidden state size = d
• Small RNN: hidden state size = d’
• d >> d’ (e.g. d=100, d’=5)

• Hidden state is shared between the RNNs.
• Big RNN updates the entire hidden state.
• Small RNN updates only a small portion of the hidden state.

Skim-RNN
• Consists of two RNNs:
• Big RNN: hidden state size = d
• Small RNN: hidden state size = d’
• d >> d’ (e.g. d=100, d’=5)

• Hidden state is shared between the RNNs.

• Big RNN updates the entire hidden state.

• Small RNN updates only a small portion of the hidden state.

• When using small RNN, the inference requires smaller # of FLOP.
• O(d2) >> O(d’d)

• Dynamically makes decision on which size of RNN to use

How to train?

• Decisions (which RNN to use) are so non-differentiable

• Policy gradient (Williams, 1992)
• REINFORCE
• Unbiased estimation
• High variance; hard to train

• Gumbel-softmax (Jang et al., 2017)
• Biased estimation
• Low variance; good empirical results
• Fully differentiable during training via reparameterization

Gumbel-softmax Reparameterization

• Start with soft decision (attention) p

• Slowly decrease temperature (!), making the distribution more
discrete
• Sampling with the attention weights (r) approximate true distribution
• Reparameterization (g) allows differentiation with stochasticity

LSTM-Jump (Yu et al., 2017)

• Orthogonal
• Skipping: you decide to skip next words / sentences before reading at all.
• Skimming: you use very small RNN to read unimportant words fast.
• Both can be combined.

• Concurrent work

LSTM-Jump (Yu et al., 2017)

• Orthogonal
• Skipping: you decide to skip next words / sentences before reading at all.
• Skimming: you use very small RNN to read unimportant words fast.
• Both can be combined.

• Concurrent work
• Skim-RNN has output for every time step
• Useful for applications that need output every time.
• Easy to replace existing RNNs.

• LSTM-Jump has GPU advantage

Classification Results

Question Answering Results

Comparing F1 & FLOP across diff configs.

0

0.2

0.4

0.6

0.8

1

73

74

75

76

B
(5

0)

S(
20

-0
.2

)

S(
50

-0
.2

)

B
(6

0)

S(
50

-0
.1

)

S(
20

-0
.1

)

S(
20

-0
.0

5)

B
(1

-ls
tm

) B

In
v.

 F
lo

p-
R

F1

F1(Skim-RNN)

Inv. Flop-R

F1(Baseline)

Visualization on
IMDb Sentiment Classification

*Black words are skimmed (small RNN), blue words are fully read.

Visualization on
Stanford Question Answering Dataset

*Black words are skimmed (small RNN), blue words are fully read.

Layer-wise Skim Visualization (SQuAD)
th

e
su

cc
es

sf
ul

sc

he
du

lin
g ,

bu
dg

et
in

g ,
co

ns
tru

ct
io

n-
si

te

sa
fe

ty
 ,

av
ai

la
bi

lit
y

an
d

tra
ns

po
rta

tio
n of

bu

ild
in

g
m

at
er

ia
ls

 ,
lo

gi
st

ic
s ,

in
co

nv
en

ie
nc

e to

th
e

pu
bl

ic

ca
us

ed

by

co
ns

tru
ct

io
n

de
la

ys

an
d

bi
dd

in
g ,

et
c .

Th
e

la
rg

es
t

co
ns

tru
ct

io
n

pr
oj

ec
ts

ar

e
re

fe
rr

ed

to

as

m
eg

ap
ro

je
ct

s

1 fw
1 bw
2 fw
2 bw

Most RNN steps at higher layer is redundant!

Dynamically controlling # of FLOP

64

68

72

76

1 1.5 2 2.5 3

F1

Flop-R (Float operation Reduction)

d’ = 10
d’ = 0

Stability of Pretraining

0

20

40

60

80

100

1st (fw) 1st (bw) 2nd (fw) 2nd (bw)

Sk
im

 r
at

e

Layer

FLOP = Speed?

• On GPU: empirically NO
• On CPU: conditionally YES, with low-level programming

TensorFlow or PyTorch?

• NumPy is faster for small matrices
• On CPUs (NumPy has no GPU compatibility)
• Batch size = 1 (latency, not throughput)
• d < 220 for TensorFlow
• d < 700 for PyTorch

• TensorFlow and PyTorch seem to have more overheads
• All benchmarks are based on NumPy

Theoretical and
Actual Speed
Gains on
NumPy

Conclusion

• Skim-RNN: switching between two different-size RNNs with shared
hidden state.
• Can be generalized to multiple RNNs.

• Speed gain can be substantial.
• More beneficial with larger hidden state size.
• Especially useful for latency.
• To get throughput advantage, will need to go low-level.

Future Work

• Using multiple granularities of RNNs (not just two)
• Extension to latency-critical applications
• Speech
• Video

• Low-level implementation

Thanks!

• http://seominjoon.github.io
• minjoon.seo@

http://seominjoon.github.io/

