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Introduction

Amazon Echo [1]

Google Home [2]
)))

Intelligent Personal Assistant
- _ Apple Siri [3]
Artificial Intelligence Speaker




Introduction

Preset voice




Introduction

Customized voice




Introduction

Customized voice

Voice customization
= easy for users to train




Introduction

Customized voice

Voice customization
= easy for users to train

Our design
- Small target speech data
- No parallel data



Introduction

1. Gather 10~ min of speech of preferred voice

03
2%

2. Send to Intu to train voice customization module

) ((c

3. Users can talk with Al speaker with customized voice



Introduction

Speech
Text-to-speech (TTS) ﬁ
Text : linguistic & phonetic feature -
Speech : phonetic & acoustic feature Complex
Requires relatively complex model L
Needs around 30 min of speech per voice [4] ﬁ
Text
Speech
Voice conversion ﬁ
Inputs and outputs have same feature domain
Requires relatively simple model Simple

Needs around 10 min of speech per voice [5]
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Introduction
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Introduction

Pre-trained using

public speech data
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Introduction

|

Target speaker

£

Source speech Target speech

Source speaker/speech
The speaker of voice before conversion [ the speaker’s speech

Target speaker/speech
The speaker whom the user prefers [ the speaker’s speech



Introduction

Contribution

Voice customization for ML-as-a-Service design

Methods for inference time optimization

Analysis for proper amount of target speech
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Related Work — IBM Watson and Project Intu

* IBM Watson : APl service for cognitive task

Conversation Text-to-speech Language translator
* Project Intu : A platform for intelligent personal assistant service

Query with

Input credential information
> »
Watson
< = server
User Output Response
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Related Work — Text-to-speech

Decision tree [7]

Text jl> ‘)\f W\ j‘>
U
Recurrent Neural Network (RNN)

Unit selection - IBM Watson’s text-to-speech [8]

Text[_»| Model >\IW\/\/V\p
Dilated convolution neural network

Parametric -WaveNet [4]

generation Recurrent Neural Network (RNN)
- Deep Voice [10]

Hidden Markov model [9]

17



Related Work —Voice conversion

Training One-to-one Many-to-one Many-to-one
data w/ parallel data w/ parallel data w/o parallel data
Codebook Gaussian mixture Boltzmann machine [13]
Model . RNN [5]
[11] model [12] Deep belief network [14]
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Outline

Model Description
Voice conversion network (VCN)

Intu

19



Model Description —Voice conversion network (VCN)

Overall structure of VCN
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Model Description —Voice conversion network (VCN)
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Model Description —Voice conversion network (VCN)

Stage |

Stage | ( TIMIT
corpus

I

Feature
extraction

———————————————

fMLLR

transformation FER

---------------

Raw wave — speaker-independent linguistic feature

Mel-frequency cepstral coefficients (MFCCs)

A kind of speech’s acoustic feature representation

Energy of each filter bank on mel-scale

22



Model Description —Voice conversion network (VCN)

Stage |

———————————————

MLLR

—3* DNN ! PPP

——————————

Stage | ( TIMIT (] I Feature
corpus extraction

Raw wave — speaker-independent linguistic feature

Feature-based Maximum Likelihood Linear Regression (fMLLR)
Speaker adaptation method transforming speech’s feature vector x [15]

Finds affine transformation weight W maximizing likelihood of the speech
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Model Description —Voice conversion network (VCN)

Stage |

Stage | ( TIMIT
corpus

I

Feature
extraction

———————————————

fMLLR
transformation

---------------

Raw wave — speaker-independent linguistic feature

Phonetic Class Posterior Probabilities (PPPs)

Probabilities of phonetic class for each piece of speech
Phoneme’s representation is limited

The number of class of triphone is too large

Cat
Phoneme: k, &, t
Triphone : [keet/

Senone is cluster of triphones which are similar
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Model Description —Voice conversion network (VCN)

Stage |

Stage | ( TIMIT (] I Feature
corpus extraction

———————————————

fMLLR

transformation FER

---------------

Raw wave — speaker-independent linguistic feature

TIMIT corpus [20] is used

MFCC, fMLLR and PPP are mapped using Kaldi toolkit [16]
Speaker-independent auto speech recognizer (SI-ASR)
maps MFCC (acoustic) feature to PPP (linguistic) feature
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Model Description —Voice conversion network (VCN)

Stage |l

Target

Feature
extraction

MFCC

PPP

» SI-ASR

DBLSTM

MCEP

SI-phonetic feature — acoustic feature of target speaker

Deep bidirectional long short-term memory (DBLSTM)

Multi-layer recurrent neural network with LSTM cell

It consists of forward and backward directional LSTM
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Model Description —Voice conversion network (VCN)

Stage |l

Target

Feature
extraction

MFCC

» SI-ASR

S

PPP

DBLSTM

SI-phonetic feature — acoustic feature of target speaker

Mel-cepstral Coefficients (MCEPS)

Another feature representation of speech

Mel-cepstrum analysis of spectrum H(z) to find coefficients ¢, (m) [17]
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Model Description —Voice conversion network (VCN)

Stage |l

Target

Feature
extraction

MFCC

PPP

» SI-ASR

DBLSTM

MCEP

SI-phonetic feature — acoustic feature of target speaker

Only requires target speech to achieve input and label
Deep bidirectional LSTM model (DBLSTM) is used to map
PPP (linguistic) feature to target speech’s MCEP (acoustic) feature
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Model Description —Voice conversion network (VCN)

Stage lll

A

Source

speech

Feature
extraction

Mﬁ SI-ASR

PPP
———| DBLSTM |

MCEP

AC

Linear

>

conversion

>

Vocoder W

Target
speech

Acoustic feature — raw wave of target speech

Fundamental Frequency (Fo)

Lowest frequency of a periodic waveform [18]

It is related with pitch of voice
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Model Description —Voice conversion network (VCN)

Stage |l

A

Source

speech

Feature
extraction

Mﬁ SI-ASR

———| DBLSTM |

MCEP

LogFO

Linear

>

conversion

>

Vocoder hJ\/Lajﬂ

Target
speech

Acoustic feature — raw wave of target speech

Aperiodicity Component (AC)

Non-periodic features of speech

It contains details of speech
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Model Description —Voice conversion network (VCN)

Sta g e I I I L SlASR /
MFCC ppp_ 7T %
Stagenl | Target . Feature e i
speech extracti i
MCEP .../
B et s :
MFCC( sask 2P o peLsTm |- MCEP
J\/\/\/\_’ Ftéamlre AC Vocoder J\/V\[
s Lot [ iear | =
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Feature AC
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speech 0g y| Linear . & =t
conversion

Acoustic feature — raw wave of target speech

Whole model is achieved by pipelining the models of previous stages
STRAIGHT vocoder [19] is used to convert acoustic features to raw wave
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Model Description — Intu

Intu structure : echoing model

I { TTS 11VCN;

/)

e Intu ¥ : ‘1
B _ Text Echo WinSpeech| _
{ extractor } [ agent ] gesture i
AudioData 2

(wave format) P Text 7o Say

1 (text format) | i (text format) |

V 1 * 1

Blackboard

. »

(MIC) input speech

— (Text extractor) speech to text — (Echo agent) change the type
— (WinSpeech gesture) text to speech — voice conversion (VCN)
— (SPK) output speech

User’s speech — (Intu voice’s speech) — target voice’s speech
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Outline

Experiments and Discussion
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Experiments and Discussion

Two experiments

1. Additional time measurement

2. Varying size of the target speech samples
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Experiments and Discussion

Additional time measurement

Results - w.r.t step Results - w.r.t task

Elapsed time(s)

M Feature extraction ™ Others Inference

Feature extraction is a major factor of time delay
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Experiments and Discussion

Additional time measurement

Main proposal 1 — Parallel processing
< SI-ASR and DBLSTM processes are independent of early process of vocoder

AC

PPP T
W MPECyl siasr DBLSTM —MCEP W
— Feature >

: »  ‘ocoder
extraction
Source Target

speech LogFo y| Linear speech
conversion I\ /
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Experiments and Discussion

Additional time measurement

Main proposal 2 — Extracting feature of Intu’s voice in advance
< IBM Watson TTS follows unit selection method

J\/\/\f —,| Feature

extraction
Source

speech

)

Vocoder

i

Database

R

Target

—

Vocoder

N~

MFCC PPP MCEP
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LogFO R Linear =
"| conversion -
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LogF0 Linear

\4

\ 4

conversion

speech

o L

Target
speech
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Experiments and Discussion

Additional time measurement

Proposal 1

80.7% time reduction

Proposal (1&)2
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Experiments and Discussion

Varying the size of target speech samples

Mel-cepstral distortion (MCD)

MCEP distance between original & reconstructed target speech [5]

MCD(dB) = i 2 (cqg — Cconverted)z
In10 d "d
\

Reconstructed
Targetspeech—[ VCN ]-(target ) speech

o <
»

MCD
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Experiments and Discussion

Varying the size of target speech samples

Mel-cepstral distortion (MCD)

MCEP distance between original & reconstructed target speech [5]

10

\

D
__ ~Cconverted\2
2 ) (cq = cgomrertedy
d=1

High MCD

Low MCD
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Experiments and Discussion

Varying the size of target speech samples

MCD for training set MCD for validation set
7] o = 30—+ 100 1A - 30—+ 100
= ~ B0+ 200 @ q‘ k)= 20
o =,
O 6- Q
2 .
0 @A
(] (O]
2 <
ol 5
0 50 100 150 200 0 50 100 150 200

Epochs Epochs

. 100+ of target speech samples avoid overfitting
=10~ min of target speech
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Conclusion

TTS +VCN is suitable for voice custom

Ization service

Parallel & pre-processing for optimization of inference time

Our design requires user 10~ min of target speech
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