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• Intelligent Personal Assistant

• Artificial Intelligence Speaker
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Amazon Echo [1]

Google Home [2]

Apple Siri [3]
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Preset voice
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Customized voice
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Customized voice
Voice customization
= easy for users to train
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Customized voice
Voice customization
= easy for users to train

Our design
- Small target speech data
- No parallel data
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1. Gather 10~ min of speech of preferred voice

2. Send to Intu to train voice customization module

3. Users can talk with AI speaker with customized voice



• Text-to-speech (TTS)
• Text : linguistic & phonetic feature

• Speech : phonetic & acoustic feature

• Requires relatively complex model

• Needs around 30 min of speech per voice [4]
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Complex

Text

Speech

• Voice conversion
• Inputs and outputs have same feature domain

• Requires relatively simple model

• Needs around 10 min of speech per voice [5]
Simple

Speech

Speech
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Project Intu [6] +    Voice conversion [5]
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Pre-trained using 

public speech data

Trained using 10~ min of 
target speech

+



Introduction

13

Target speechSource speech

• Target speaker/speech
The speaker whom the user prefers / the speaker’s speech

Target speaker

• Source speaker/speech
The speaker of voice before conversion / the speaker’s speech
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Contribution

• Voice customization for ML-as-a-Service design

• Methods for inference time optimization

• Analysis for proper amount of target speech
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Related Work – IBM Watson and Project Intu
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• IBM Watson : API service for cognitive task

Conversation Text-to-speech Language translator

• Project Intu : A platform for intelligent personal assistant service
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Parametric 
generation

Model

Unit selection

Text

Text

Decision tree [7]

Recurrent Neural Network (RNN)
- IBM Watson’s text-to-speech [8]

Hidden Markov model [9]

Dilated convolution neural network
- WaveNet [4]
Recurrent Neural Network (RNN)
- Deep Voice [10]



Training
data

One-to-one 
w/ parallel data

Many-to-one 
w/ parallel data

Many-to-one 
w/o parallel data

Related Work – Voice conversion
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Lifa Sun et al., 2016 [5]

• Multi-layer bidirectional RNN is used

• Both input & output are from target speech
⇒ No parallel data and alignment issue

Codebook 
[11] 

Gaussian mixture  
model [12]

Boltzmann machine [13]
Deep belief network [14]

RNN [5]Model
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Model Description – Voice conversion network (VCN)
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• Overall structure of VCN

• Training step
• Stage I : raw wave → linguistic feature
• Stage II : linguistic feature → target speaker’s acoustic feature
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• Overall structure of VCN

• Inferring step
• Stage III : source speech → target speech
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• Stage I

• Mel-frequency cepstral coefficients (MFCCs)
• A kind of speech’s acoustic feature representation

• Energy of each filter bank on mel-scale

Raw wave → speaker-independent linguistic feature
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• Stage I

• Feature-based Maximum Likelihood Linear Regression (fMLLR)
• Speaker adaptation method transforming speech’s feature vector [15]

• Finds affine transformation weight maximizing likelihood of the speech

Raw wave → speaker-independent linguistic feature



• Phonetic Class Posterior Probabilities (PPPs)
• Probabilities of phonetic class for each piece of speech 

• Phoneme’s representation is limited

• The number of class of triphone is too large

• Senone is cluster of triphones which are similar

Model Description – Voice conversion network (VCN)
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• Stage I

Cat 
Phoneme : k, æ, t
Triphone : /kæt/

Raw wave → speaker-independent linguistic feature



Model Description – Voice conversion network (VCN)
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• TIMIT corpus [20] is used
• MFCC, fMLLR and PPP are mapped using Kaldi toolkit [16]
• Speaker-independent auto speech recognizer (SI-ASR) 

maps MFCC (acoustic) feature to PPP (linguistic) feature

• Stage I

Raw wave → speaker-independent linguistic feature
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• Stage II

• Deep bidirectional long short-term memory (DBLSTM)
• Multi-layer recurrent neural network with LSTM cell

• It consists of forward and backward directional LSTM

SI-phonetic feature → acoustic feature of target speaker
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• Stage II

• Mel-cepstral Coefficients (MCEPs)
• Another feature representation of speech

• Mel-cepstrum analysis of spectrum to find coefficients [17]

SI-phonetic feature → acoustic feature of target speaker



Model Description – Voice conversion network (VCN)
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• Stage II

• Only requires target speech to achieve input and label
• Deep bidirectional LSTM model (DBLSTM) is used to map

PPP (linguistic) feature to target speech’s MCEP (acoustic) feature

SI-phonetic feature → acoustic feature of target speaker



Model Description – Voice conversion network (VCN)
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• Stage III

• Fundamental Frequency (F0)
• Lowest frequency of a periodic waveform [18]

• It is related with pitch of voice

Acoustic feature → raw wave of target speech



Model Description – Voice conversion network (VCN)
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• Stage III

• Aperiodicity Component (AC)
• Non-periodic features of speech

• It contains details of speech

Acoustic feature → raw wave of target speech



Model Description – Voice conversion network (VCN)
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• Stage III

• Whole model is achieved by pipelining the models of previous stages
• STRAIGHT vocoder [19] is used to convert acoustic features to raw wave

Acoustic feature → raw wave of target speech



Model Description – Intu
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• Intu structure : echoing model

(MIC) input speech
→ (Text extractor) speech to text → (Echo agent) change the type 
→ (WinSpeech gesture) text to speech → voice conversion (VCN)
→ (SPK) output speech

User’s speech → (Intu voice’s speech) → target voice’s speech
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Experiments and Discussion
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Two experiments

1. Additional time measurement 

2. Varying size of the target speech samples
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• Additional time measurement

Results - w.r.t task

0 10 20 30 40 50

Elapsed time(s)
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St II

Vocoder

Results - w.r.t step
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Feature extraction is a major factor of time delay
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• Additional time measurement

Main proposal 1 – Parallel processing
← SI-ASR and DBLSTM processes are independent of early process of vocoder
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• Additional time measurement

Main proposal 2 – Extracting feature of Intu’s voice in advance
← IBM Watson TTS follows unit selection method

MCEP
DBLSTM

PPP

LogF0

AC

Linear
conversion

Vocoder
Target 
speech

Database

MCEP

Source 
speech

Feature
extraction

MFCC
SI-ASR DBLSTM

PPP

LogF0

AC

Linear
conversion

Vocoder
Target 
speech
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• Additional time measurement

80.7% time reduction

100%

59.0%

Naïve Proposal 1

19.3%

Proposal (1&)2
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Varying the size of target speech samples

• Mel-cepstral distortion (MCD)

MCEP distance between original & reconstructed target speech [5]

 

Vocod
erTarget speech

Reconstructed
(target) speechVCN

MCD
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Varying the size of target speech samples

• Mel-cepstral distortion (MCD)

MCEP distance between original & reconstructed target speech [5]

 

High MCD Low MCD
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• Varying the size of target speech samples 

MCD for training set

St.1

St.2

Vocoder

MCD for validation set

100+ of target speech samples avoid overfitting
= 10~ min of target speech
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Conclusion
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• TTS + VCN is suitable for voice customization service

• Parallel & pre-processing for optimization of inference time

• Our design requires user 10~ min of target speech
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