Adversarial Al & Adversarial Robustness Toolbox

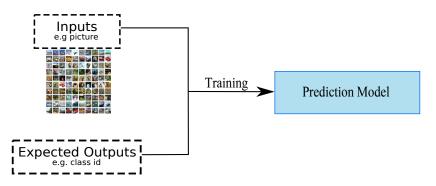
Irina Nicolae

AI & Machine Learning IBM Research Ireland

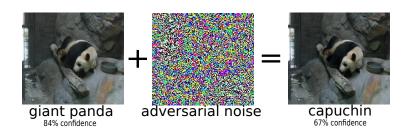
May 31, 2018

Evasion Attacks Against Machine Learning

Training



Prediction



- Perturb model inputs with crafted noise
- Model fails to recognize input correctly
- · Attack undetectable by humans
- Random noise does not work.

Image segmentation¹

Attack noise hides pedestrians from the detection system.

¹Metzen et al., *Universal Adversarial Perturbations Against Semantic Image Segmentation*. https://arxiv.org/abs/1704.05712.

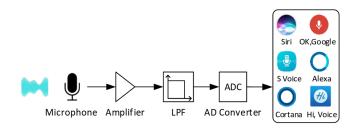
Road signs²

Car ends up ignoring the stop sign.

True image

Adversarial image

²McDaniel et al., *Machine Learning in Adversarial Settings*. IEEE Security and Privacy, vol. 14, pp. 68-72, 2016.

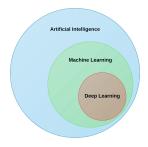


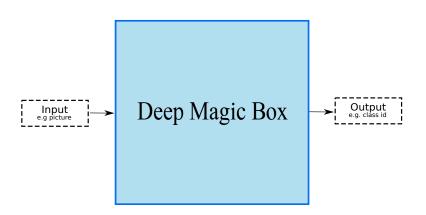
Okay Google, text John!³

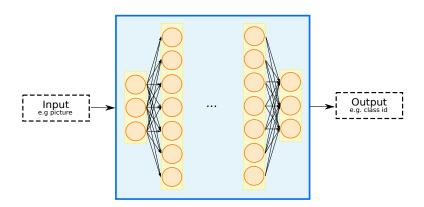
- Stealthy voice commands recognized by devices
- Humans cannot detect it.

³Zhang et al., *DolphinAttack: Inaudible Voice Commands*, ACM C

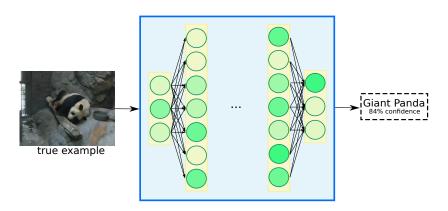
Deep Learning and Adversarial Samples







- Interconnected layers propagate the information forward.
- Model learns weights for each neuron.

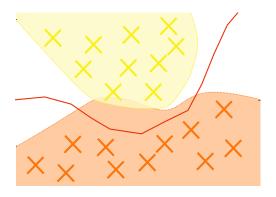


- Specific neurons light-up depending on the input.
- Cumulative effect of activation moves forward in the layers.



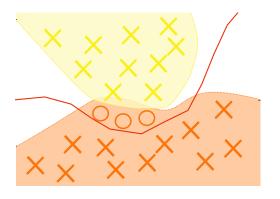
Small variations in the input \rightarrow important changes in the output.

- + Enhanced discriminative capacities
- Opens the door to adversarial examples



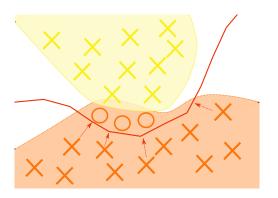
The **learned model** slightly differs from the **true** data distribution...

The Space of Adversarial Examples



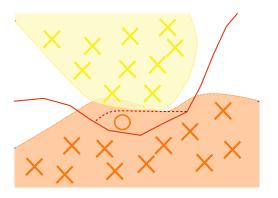
... which makes room for adversarial examples.

Attack: Use the Adversarial Directions

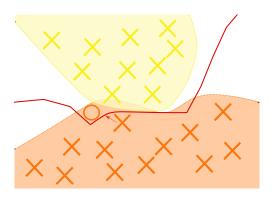


- Most attacks try to move inputs across the boundary.
- Attacking with a random distortion doesn't work well in practice.

Defense: Adversarial Training



 Adapt the classifier to attack directions by including adversarial data at training.



- Adapt the classifier to attack directions by including adversarial data at training.
- But there are always new adversarial samples to be crafted.

The Adversarial Robustness Toolbox

Adversarial Robustness Toolbox (ART)

https://github.com/IBM/adversarial-robustness-toolbox

- Python library
- Evasion attacks, defenses, detection, robustness metrics
- Framework-agnostic
- Focus on image data
- Target users
 - ullet Researchers o rapid prototyping
 - Developers → adversarial robustness services
- Open-source release at RSA 2018

Supported Methods

Attacks	Defenses	
DeepFool Fast Gradient Method	Feature Squeezing Spatial Smoothing	
Jacobian Saliency Map NewtonFool	Label Smoothing Adversarial Training Virtual Adversarial Training Gaussian Augmentation	
Universal Perturbation C&W Attack Virtual Adversarial Method		
Frameworks	Metrics	
TensorFlow Keras PyTorch (soon) MXNet (soon)	Loss sensitivity Empirical robustness CLEVER	

Competitor Analysis

	CleverHans	FoolBox	Nemesis
Release date	Sept 16, 2016	June 4, 2017	March 25, 2018
Affiliation	Open AI, Google	Tubingen U.	IBM Research
GitHub org	tensorflow	bethgelab	IBM
GitHub metrics	1927 stars, 503 forks	492 stars, 83 forks	229 stars, 59 forks
Features			
Attacks	✓	✓	✓
Defenses	X	X	✓
Detection	×	X	in progress
Robustness metrics	×	X	
Fwk-agnostic	X	✓	✓
Other data types	×	X	planned


```
from keras.datasets import mnist
from keras.models import load model
from art.attacks import CarliniL2Attack
from art.classifier import KerasClassifier
from art.metrics import loss sensitivity
# Load data
( , ), (x test, y test) = mnist.load data()
# Load model and build classifier
model = load model('my favorite keras model.h5')
classifier = KerasClassifier((0, 1), model)
# Perform attack
attack = CarliniL2Attack(classifier)
adv x test = attack.generate(x test)
# Compute metrics on model robustness
print(loss sensitivity(classifier, x test))
```


- The problem of adversarial examples needs to be solved before applying machine learning.
- The arms race for attacks and defenses continues.

Getting started with ART

- Code https: //github.com/IBM/adversarial-robustness-toolbox
- Documentation https: //adversarial-robustness-toolbox.readthedocs.io

