TAPAS: Train-less accuracy predictor for architecture searches

<u>R. Istrate</u>, F. Scheidegger, G. Mariani, P. Chatzidoukas, C. Bekas, C. Malossi IBM Research – Zurich

June 5th, 2018 | Weekly Speaker Series : Measuring AI Progress with Cognitive Opentech

Table of content

- Motivations and state-of-the-art
- Methodology:
 - Train-less Accuracy Predictor for Architecture Search
 - Dataset characterization
 - Lifelong database of experiments
 - Train-less accuracy predictor
- Results
 - Accuracy prediction comparison with Peephole and Learning Curves Extrapolation
 - Performance comparison with Google Large Scale Evolution
- Conclusions and future works

What it takes to automatize NN architecture discovery:

- 1. Preserve and re-use knowledge learned from previously experiments and models
- 2. Predict performance of architectures before training
- 3. Dynamically adapt to complexity of input dataset
- 4. Smart algorithms that perform large scale search, minimizing training

3 | © 2018 - IBM Corporation Copyright

State-of-the-art: Google large scale evolution approach

- Mutation algorithm to generate networks
 Architecture search over very large spaces
- Expensive: 1000 individuals, 250 workers, 10 days of experiments for CIFAR-10 network
 Would not scale when used on larger datasets

REF: Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc Le, Alex Kurakin, Large-Scale Evolution of Image Classifiers, 2017

State-of-the-art: Peephole, prediction before training

REF: Deng, Boyang, Junjie Yan, and Dahua Lin. "Peephole: Predicting network performance before training." arXiv preprint arXiv:1712.03351 (2017).

- Cheap: evaluates network performance without training
- Architecture search over large spaces at no cost

Dataset specific

- Requires over 1000 networks trained on same dataset
- Generated networks have fixed convolutional structure

Train-Less Accuracy Predictor for Architecture Search

Three main components:

- Dataset Characterization (DC): rank dataset by difficulty
- Lifelong Database of Experiments (LDE): store experiments and grows over time
- Train-less Accuracy Predictor (TAP): predict performance of networks in real-time

Dataset characterization from literature experiments

- Literature study on 14 datasets
- Some dataset are part of large competitions (more points)
- Some results are obtained with transfer learning

Key observation:

- Large variability per dataset
- There is a clear ranking

ProbeNets: networks for dataset characterization

- 7 static (only softmax & input scale with number of classes)
- 3 dynamic (topology scales with number of classes)
- 8 | © 2018 IBM Corporation Copyright

ProbeNets: cheap, quick, and accurate

					100				/
Probe Net	C = 10		C = 100						
	OPs	Weights	OPs	Weights	\sim		•	+	
Regular	0.81M	11 K	0.86M	57.5K	°° g				_
Narrow	0.09M	2K	0.10M	13K	In				
Wide	10.34M	114K	10.52M	299K	\mathbf{S}				
Shallow	0.24M	21K	0.42M	205K	6 0	- /			
Shallow norm.	0.06M	5K	0.10M	51K	0	+	///		
Deep	1.40M	100K	1.41M	112K		+	<i>K</i> /•		
Deep norm.	19.76M	1576K	19.81M	1622K	40				
MLPs	2.90M	2908K	3.10M	3107K					
Kernel depth	0.53M	6K	4.56M	384K	Se Se				
Length	1.41M	118K	4.39M	338K	20				
ResNet-20	40.55M	271K	40.56M	277K				Narrow,	R ²
					_			 Wide, R⁴ Regular, 	- = 1 . R ²

- Good performance compared to ResNet-20
- Cost reduced up to 50x for Regular, and 400x for Narrow

100

Probe Net Accuracy

Lifelong database of experiments (LDE)

- Network prediction build on the intermediate evaluation of all sub-networks
- Incremental training approach used to populate LDE and obtain intermediate accuracies

Accuracy prediction comparison with Peephole and LCE

Scenario A (first row):

- Input dataset: CIFAR-10
- 1 dataset in LDE: CIFAR-10
- 90% cross-validation

Scenario B (second row):

- Input dataset: CIFAR-10
- 20 dataset in LDE (including CIFAR-10)
- 90% cross-validation

TAP on unseen datasets: effect of LDE filtering and DCN

Scenario C:

- 11 leave-one-out cross-validations
- Input dataset: one of the eleven available
- 19 dataset in LDE (10 real not including the input one + 9 sub-sampled from Imagenet)
 13 | © 2018 IBM Corporation Copyright

Performance comparison: Google large scale evolution

Comparison of resources utilization:

Google: 256h on 250 workers (many GPUs)
 TAPAS 400 s on 1 GPU (without training)

14 | © 2018 - IBM Corporation Copyright

Conclusions and future works

Framework features summary:

- Dataset agnostic
- Leverage experience from previously trained networks (continuous learning)
- Real-time prediction that scales with resources
- Can be used in many architecture search algorithms

Near future works:

- Extension to other type of DL problems: object detection, scene labeling NLP, etc.
- Extension to other type of DL dataset: video, text, audio signal, etc.
- Full framework for architecture search on IBM Cloud (under development)
- Full framework delivery on OpenPOWER

15 | © 2018 - IBM Corporation Copyright

References

- R. Istrate, F. Scheidegger, G. Mariani, P. Chatzidoukas, D. Nikolopoulos, C. Bekas, A. C. I. Malossi. TAPAS: Train-less Accuracy Predictor for Architecture Search, In Preparation, 2018
- R. Istrate, A. C. I. Malossi, C. Bekas and D. Nikolopoulos. Incremental Training of Deep Convolutional Neural Networks. In Proceedings of AutoML at ECML-PKDD, Skopje, Macedonia, <u>https://arxiv.org/abs/1803.10232</u>, 2017
- F. Scheidegger, R. Istrate, G. Mariani, L. Benini, C. Bekas, A. C. I. Malossi. Efficient Image Dataset Classification Difficulty Estimation for Predicting Deep-Learning Accuracy, <u>https://arxiv.org/abs/1803.09588</u>, 2018
- G. Mariani, F. Scheidegger, R. Istrate, C. Bekas, C. Malossi. BAGAN: Data Augmentation with Balancing GAN, <u>https://arxiv.org/abs/1803.09655</u>, 2018

THANK YOU

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. Other product and service names might be trademarks of IBM or other companies.

