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Motivations

Modify network
(Q: what has to be
, o , changed?)
= Network architecture design is expensive: Trained model
time, resources, people Never ending loop! (Q: has this been

obtained in the

= Currently based on empirical processes U shortest dev-time?)
\ 4

o Train Is accuracy OK?
D(er.'gvr;"enr'gat:)ns?;vrvtgr)k (Q: for how long: (Q: how much can
) hours/days/weeks?) it be improved?)

What it takes to automatize NN architecture discovery:

1. Preserve and re-use knowledge learned from previously experiments and models
2. Predict performance of architectures before training

3. Dynamically adapt to complexity of input dataset
4

Smart algorithms that perform large scale search, minimizing training

Iyt
fflh]
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State-of-the-art: Google large scale evolution approach

v Mutation algorithm to
generate networks

v" Architecture search over
very large spaces

94.6 |

= Expensive: 1000
individuals, 250 workers,

: 10 days of experiments for

LI E— CIFAR-10 network

‘| = Would not scale when
used on larger datasets

test accuracy (%)

0.9 28.1 70.2 wall time (hours) 256.2

REF: Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena,
Yutaka Leon Suematsu, Jie Tan, Quoc Le, Alex Kurakin, Large-Scale
Evolution of Image Classifiers, 2017

4| © 2018 - IBM Corporation Copyright



State-of-the-art: Peephole, prediction before training

With Peephole:
< 1s/loop

Predicted accuracy (less than 1s/accuracy)

Block Architecture Block Layer Code Epoch ID

Com it —> (CHEGTEEAD —>
v v
Masroize > (OSSR —>

v

v
Ccomsisos — (EHEBHERD —

REF: Deng, Boyang, Junjie Yan, and Dahua Lin. "Peephole: Predicting
network performance before training." arXiv preprint
arXiv:1712.03351 (2017).
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Cheap: evaluates network
performance without
training

Architecture search over
large spaces at no cost

Dataset specific

Requires over 1000
networks trained on same
dataset

Generated networks have
fixed convolutional
structure



Train-Less Accuracy Predictor for Architecture Search

= mins

Three main components:
= Dataset Characterization (DC): rank dataset by difficulty
= | ifelong Database of Experiments (LDE): store experiments and grows over time

= [rain-less Accuracy Predictor (TAP): predict performance of networks in real-time
% :r—-r TAP -->» Accuracy
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Dataset characterization from literature experiments

= Literature study on 14 datasets 100w ®
| ]
o
= Some dataset are part of large 90 ' <&
iy . [ ]
competitions (more points) |
L 80 ° < o
\ \ — (] (_J
« Some results are obtained with & __ ] ‘ 4
' Nt ' ®
transfer learning 3 3 > e
< 60 ° |
- ° ) °
& . L S
= 50 3 o
[ ] ’ 1
Key observation: 40 o )
» Large variability per dataset 30
9 yp @{\\9\ LS @,\Q &£ & 6\0{} S & O @& g
2 (S
= There is a clear ranking » o @é & &° e &
<
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ProbeNets: networks for dataset characterization

a) b) c) d) e) f)
32x32x3 ¢ 32x32x3 ¢ 32x32x3 ¢ 32x32x3 32x32x3 32x32x3 ¢
CONV, 8 (2) [32] 3x3 CONV, 8 (2) CONV, 8 (32) | conv.t |
CONV, f
16x16x8 ¢ 16x16x8 16x16x8 ¢(16x16x32) | |
- rrepetitions
CONV, 16 (4) [64] CONV, 16 (64) [ CONV, f |
8x8x16¢ 8x8x16 ¢(8X8X64) ¢
CONYV, 32 (8) [128] CONV, 32 (128)
4x4x32 4x4x32 ¢(4x4x128)
CONV, 64 (256)
2x2x64 #2x2x256) 2x2x64

CONV, 128 (512)

1x1x128 ‘ (1x1x512) 1x1x128
10 networks:

= 7 static (only softmax & input scale with number of classes)

= 3 dynamic (topology scales with number of classes)
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ProbeNets: cheap, quick, and accurate

100

Probe Net | C =10 C =100

| OPs  Weights | OPs Weights >
Regular 0.81M 11K | 086M  57.5K o
Narrow 0.09M 2K | 0.10M 13K -]
Wide 1034M 114K | 10.52M 299K S
Shallow 0.24M 21K 0.42M 205K © &0
Shallow norm. | 0.06M 5K | 0.10M 51K g
Deep 1.40M 100K 1.41IM 112K Ly
Deep norm. 19.76M 1576K | 19.81M 1622K %J 20
MLPs 2.90M 2908K 3.10M 3107K %
Kernel depth 0.53M 6K | 4.56M 384K 2%
Length 1.41M 118K 4.39M 338K 20
ResNet-20 | 40.55M 271K | 4056M 277K § Narou, R?=0883

Wide, R? = 0.976
+ Regular, R2 = 0.952

= Good performance compared to ResNet-20 0 20 4 60 80 100
Probe Net Accuracy

= Cost reduced up to 50x for Regular, and 400x for Narrow
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Lifelong database of experiments (LDE)

Calibrated TAP

] Hard—M
SVHN A
GTSRB A
Imagenet S1 4
CIFAR-100 r
Imagenet S2

1.0 1.0
.08 . >0.8
g o
3 o8 !
S 0.61 X $ 0.6
© @®©
8 ©
£o04 Hard Medium Easy & 0.4
2 SVHN - 5
a GTSRB - e
0.2 Imagenet S1 1 H o 0.2
CIFAR-100 °
ImagenetSZ:;
0.0 . : 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0

Trained accuracy

Hl New input dataset

Selected datasets from LDE

0.2

0.4 06 08 1.0
Trained accuracy

[Z1 Discarded datasets from LDEJ
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TAP layer-by-layer workflow

li ll:i
Laver tvpe Output/Input  Output/Input  Number of Total number Inference | Inference Accurac
yertyp height ratio depth ratio weights of layers FLOPs memory Y

DCN

_______________ TAP
1 DCN
AP, o

______ Concat______./ : : AN DCN

\4

= Network prediction build on the intermediate evaluation of all sub-networks

= |ncremental training approach used to populate LDE and obtain intermediate accuracies
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Accuracy prediction comparison with Peephole and LCE

Scenario A (first row):
= |nput dataset: CIFAR-10
= 1 dataset in LDE: CIFAR-10

» 90% cross-validation

Scenario B (second row):
= |nput dataset: CIFAR-10

= 20 dataset in LDE (including
CIFAR-10)

» 90% cross-validation
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1.0 Peephole 10 LCE 1.0 TAP
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TAP on unseen datasets: effect of LDE filtering and DCN

1.0 TAP without DCN

© o o
IN o ©

Predicted accuracy

o
N

0. . . J
%.0 0.2 0.4 0.6
Accuracy after training

Scenario C:

0.8

TAP without LDE filtering

1.0
-
0.8‘ . Py 22 Fl!
[ 4 .-.1 H :.:
o @ .-I! Y
o ' O o “ ° .“*
0.6 % ¢ ]
e o '. ° ° q: ¢
p o
.‘ o";.' H
0.4] _ 30 ¥
= £ %
° 0
ey a2l
021 % e MSE = 0.0068
/ Tau = 0.811
R? =0.898
o>
0'%. 0.2 0.4 0.6 0.8 1.0

» 11 leave-one-out cross-validations

Accuracy after training

= |nput dataset: one of the eleven available

1.0

TAP with LDE filtering

0.8
0.6
0.4

0.2

0.%.

19se1ep Uaasun D OLIeUDIS

. ¥
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o alme I MSE = 0.0040

(1) Tau = 0.846

R?2 =0.941

02 04 06 08

Accuracy after training

= 19 dataset in LDE (10 real not including the input one + 9 sub-sampled from Imagenet)
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Performance comparison: Google large scale evolution

1.0

0.8

Predicted | Trained |Reference

Predicted accuracy (%)

91.94% | 93.67%
91.73%

2nd

93.41%
391 91.76% | 93.31% -

0.0 T T T T T T T T
0 50 100 150 200 250 300 350 400

. . . Wall time (seconds)
Comparison of resources utilization:

= Google: 256h on 250 workers (many GPUS) = TAPAS 400 s on 1 GPU (without training)
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Conclusions and future works

Framework features summary:

= Dataset agnostic

= | everage experience from previously trained networks (continuous learning)
= Real-time prediction that scales with resources

= Can be used in many architecture search algorithms

Near future works:

= Extension to other type of DL problems: object detection, scene labeling NLP, etc.
= Extension to other type of DL dataset: video, text, audio signal, etc.

= Full framework for architecture search on IBM Cloud (under development)

= Full framework delivery on OpenPOWER
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