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Motivations

§ Network architecture design is expensive:
time, resources, people

§ Currently based on empirical processes

What it takes to automatize NN architecture discovery:

1. Preserve and re-use knowledge learned from previously experiments and models 

2. Predict performance of architectures before training

3. Dynamically adapt to complexity of input dataset

4. Smart algorithms that perform large scale search, minimizing training

Design initial network
(Q: where to start?)

Train 
(Q: for how long: 

hours/days/weeks?)

Modify network
(Q: what has to be 

changed?)

Is accuracy OK?
(Q: how much can 
it be improved?)

Never ending loop!
Trained model

(Q: has this been 
obtained in the 

shortest dev-time?)
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State-of-the-art: Google large scale evolution approach

REF: Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, 
Yutaka Leon Suematsu, Jie Tan, Quoc Le, Alex Kurakin, Large-Scale 
Evolution of Image Classifiers, 2017

ü Mutation algorithm to 
generate networks

ü Architecture search over 
very large spaces

Expensive: 1000 
individuals, 250 workers, 
10 days of experiments for 
CIFAR-10 network
Would not scale when 
used on larger datasets
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State-of-the-art: Peephole, prediction before training

REF: Deng, Boyang, Junjie Yan, and Dahua Lin. "Peephole: Predicting 
network performance before training." arXiv preprint 
arXiv:1712.03351 (2017).

ü Cheap: evaluates network 
performance without 
training

ü Architecture search over 
large spaces at no cost

Dataset specific
Requires over 1000 
networks trained on same 
dataset
Generated networks have 
fixed convolutional 
structure
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Train-Less Accuracy Predictor for Architecture Search

Three main components:

§ Dataset Characterization (DC): rank dataset by difficulty

§ Lifelong Database of Experiments (LDE): store experiments and grows over time

§ Train-less Accuracy Predictor (TAP): predict performance of networks in real-time
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Dataset characterization from literature experiments

§ Literature study on 14 datasets

§ Some dataset are part of large 
competitions (more points)

§ Some results are obtained with 
transfer learning

Key observation:

§ Large variability per dataset

§ There is a clear ranking
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ProbeNets: networks for dataset characterization 

10 networks:

§ 7 static (only softmax & input scale with number of classes)

§ 3 dynamic (topology scales with number of classes)
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ProbeNets: cheap, quick, and accurate

Probe Net Accuracy
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§ Good performance compared to ResNet-20

§ Cost reduced up to 50x for Regular, and 400x for Narrow 
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Lifelong database of experiments (LDE)
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TAP layer-by-layer workflow 

a)

b)
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§ Network prediction build on the intermediate evaluation of all sub-networks

§ Incremental training approach used to populate LDE and obtain intermediate accuracies 
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Accuracy prediction comparison with Peephole and LCE

Scenario A (first row):

§ Input dataset: CIFAR-10

§ 1 dataset in LDE: CIFAR-10

§ 90% cross-validation

Scenario B (second row):

§ Input dataset: CIFAR-10

§ 20 dataset in LDE (including 
CIFAR-10)

§ 90% cross-validation
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TAP on unseen datasets: effect of LDE filtering and DCN

Scenario C:

§ 11 leave-one-out cross-validations

§ Input dataset: one of the eleven available

§ 19 dataset in LDE (10 real not including the input one + 9 sub-sampled from Imagenet)
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Performance comparison: Google large scale evolution

Comparison of resources utilization: 

§ Google: 256h on 250 workers (many GPUs) § TAPAS 400 s on 1 GPU (without training) 

94.6%
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Conclusions and future works
Framework features summary:

§ Dataset agnostic

§ Leverage experience from previously trained networks (continuous learning) 

§ Real-time prediction that scales with resources

§ Can be used in many architecture search algorithms

Near future works:

§ Extension to other type of DL problems: object detection, scene labeling NLP, etc.

§ Extension to other type of DL dataset: video, text, audio signal, etc. 

§ Full framework for architecture search on IBM Cloud (under development) 

§ Full framework delivery on OpenPOWER
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