Collecting, Modeling and Predicting Human Gait Kinematics

Łukasz Kidziński

June 12, 2018
(D)

Collecting

Modeling
Predicting

Collecting kinematic data

(D)

Pelvic tilt

Pelvic obliquity

Pelvic rotation

Hip flexion

Hip adduction

Hip rotation

Knee flexion

Knee rotation

Ankle dorsiflexion

Foot progression

Cons

Stanford
University

Problems:

- Expensive equipment
- An engineer needed
- A physical therapist needed
- Controlled lab environment

Therefore:

- Only a few visits in patient's life
- Function different outside of the lab
(D)

Left ankle pos

Left knee pos

Left hip pos

Getting the cadence

Stanford University

Periodogram of the left ankle

Cadence: true vs predicted

$$
\rho=0.6
$$

Getting the step length

Stanford University

$\hat{S}=1.2 H \cdot \frac{\max _{t}\left|x_{a n k}, L(t)-x_{a n k}, R(t)\right|}{\max _{t}\left|y_{e a r}, L(t)-y_{a n k, L}(t)\right|}$,

Step length: true vs predicted

$$
\rho=0.41
$$

Getting the GDI

Stanford University

Objective:

A library for extracting meaningful biomechanic signals from videos

Dataset - Functional features

Stanford University

Dimensionality reduction

1. We reduce dimensionality using PCA.

$\left[\begin{array}{r|rrr}\text { age } & \text { PC1 } & \text { PC2 } & \text { PC3 } \\ \hline 5.8 & 33.5 & -12.4 & 43.7 \\ 5.0 & 233.3 & 34.7 & -25.4 \\ 6.9 & -77.4 & 49.4 & -67.1 \\ 9.4 & 29.3 & 8.2 & -42.7 \\ 10.7 & -26.2 & 1.8 & 31.6 \\ 6.3 & -55.8 & 18.7 & 31.3 \\ 10.0 & 9.5 & 10.4 & 4.0 \\ 13.0 & 51.4 & 14.0 & -4.6 \\ 5.9 & 47.4 & 18.0 & 0.4 \\ 9.8 & 35.9 & 21.1 & -11.6 \\ \vdots & \vdots & \vdots & \end{array}\right]$

Modelling

Stanford
University
2. We model each component as a function of age.
$\left[\begin{array}{r|rrr}\text { age } & \text { PC1 } & \text { PC2 } & \text { PC3 } \\ \hline 5.8 & 33.5 & & \\ 5.0 & 233.3 & & \\ 6.9 & -77.4 & & \\ 9.4 & 29.3 & & \\ 10.7 & -26.2 & & \\ 6.3 & -55.8 & & \\ 10.0 & 9.5 & & \\ 13.0 & 51.4 & & \\ 5.9 & 47.4 & & \\ 9.8 & 35.9 & & \\ \vdots & \vdots & & \end{array}\right]$

Modelling

Stanford
University
2. We model each component as a function of age.

Modelling

Stanford
University
2. We model each component as a function of age.
$\left[\begin{array}{r|rrr}\text { age } & \text { PC1 } & \text { PC2 } & \text { PC3 } \\ \hline 5.8 & & & 43.7 \\ 5.0 & & & -25.4 \\ 6.9 & & & -67.1 \\ 9.4 & & & -42.7 \\ 10.7 & & & 31.6 \\ 6.3 & & & 31.3 \\ 10.0 & & & 4.0 \\ 13.0 & & & -4.6 \\ 5.9 & & & 0.4 \\ 9.8 & & & -11.6 \\ \vdots & & & \vdots\end{array}\right]$

Modelling

3. We reconstruct the process.

$$
\left[\begin{array}{r|rrr}
\text { age } & \text { PC1 } & \text { PC2 } & \text { PC3 } \\
\hline 4.08 & 0.49 & -4.47 & 10.21 \\
4.16 & 0.48 & -4.42 & 10.09 \\
4.24 & 0.48 & -4.37 & 9.97 \\
4.32 & 0.47 & -4.32 & 9.85 \\
4.40 & 0.46 & -4.26 & 9.73 \\
4.48 & 0.46 & -4.21 & 9.61 \\
4.56 & 0.45 & -4.16 & 9.49 \\
4.64 & 0.45 & -4.11 & 9.38 \\
4.72 & 0.44 & -4.06 & 9.26 \\
4.80 & 0.44 & -4.00 & 9.14 \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right]
$$

Individual evolutions

Stanford

Individual evolutions

Stanford
University

Problem

Stanford University

Data:

For each patient $i \in\{1, \ldots, N\}$, observe n_{i} points $\left\{y_{i, 1}, y_{i, 2}, \ldots, y_{i, n_{i}}\right\}$ at age $\left\{t_{i, 1}, t_{i, 2}, \ldots, t_{i, n_{i}}\right\}$.

Problem:

Estimate individual curves $Y_{i}(t)$.

Problem

Stanford University

Data:

For each patient $i \in\{1, \ldots, N\}$, observe n_{i} points $\left\{y_{i, 1}, y_{i, 2}, \ldots, y_{i, n_{i}}\right\}$ at age $\left\{t_{i, 1}, t_{i, 2}, \ldots, t_{i, n_{i}}\right\}$.

Problem:

Estimate individual curves $Y_{i}(t)$.

Solution 1: Mixed-effect model

We assume

$$
y_{i, \cdot} \sim \mathcal{N}\left(\mu_{i}+B_{i} \mathbf{w}_{i}, \sigma^{2} I_{n_{i}}\right)
$$

where $\mathbf{w}_{i} \sim \mathcal{N}(0, \Sigma), \Sigma \in \mathbb{R}^{K \times K}$.

Solution 2: Low-rank model

We assume

$$
y_{i, .} \sim \mathcal{N}\left(\mu_{i}+B_{i} A \mathbf{w}_{i}, \sigma^{2} I_{n_{i}}\right)
$$

where $\mathbf{w}_{i} \sim \mathcal{N}(0, \Sigma), \Sigma \in \mathbb{R}^{D \times D}$,
$A \in \mathbb{R}^{K \times D}$ and $D<K$.

Solution 3: Matrix completion

Stanford

We want to fit

$$
\sum_{i=1}^{N} \sum_{j=1}^{n_{i}}\left\|Y_{i}\left(t_{i, j}\right)-y_{i, j}\right\|^{2}
$$

Solution 3: Matrix completion

Ω - set of observed indices
$P_{\Omega}(\cdot)$ - projection on observed subspace
$\|A\|_{F}^{2}$ - sum of squared elements
$\|A\|_{*}$ - sum of singular values

Solution 3: Matrix completion

Stanford University

Mixed-effect model

$$
\underset{W}{\arg \min }\left\|P_{\Omega}\left(W B^{\prime}-Y\right)\right\|_{F}^{2}
$$

Solution 3: Matrix completion

Sparse longitudinal completion

$\arg \min \left\|P_{\Omega}\left(W A^{\prime} B^{\prime}-Y\right)\right\|_{F}^{2}$
W, A

Solution 3: Matrix completion

Sparse longitudinal completion

$\underset{W}{\arg \min }\left\|P_{\Omega}\left(W A^{\prime} B^{\prime}-Y\right)\right\|_{F}^{2}+\lambda \cdot \operatorname{rank}(A)$
W, A

Solution 3: Matrix completion

Sparse longitudinal completion

$$
\underset{W, A}{\arg \min }\left\|P_{\Omega}\left(W A^{\prime} B^{\prime}-Y\right)\right\|_{F}^{2}+\lambda\|A\|_{*}
$$

Sparse functional PCA fit

Stanford

 UniversitySparse PCA

Sparse Impute

Sparse functional PCA fit

Stanford University

Solution 3: Matrix completion

Stanford
University

Multivariate sparse longitudinal completion

$\underset{W, A}{\arg \min }\left\|P_{[\Omega, \Omega]}\left(W\left[A_{1}^{\prime}, A_{2}^{\prime}\right] B^{\prime} \otimes I_{2}-\left[Y_{1}, Y_{2}\right]\right)\right\|_{F}^{2}+\left\|\left[A_{1}^{\prime}, A_{2}^{\prime}\right]\right\|_{*}$

PCA plane in OpenSim

PCA plane in OpenSim

Cerebral palsy

University

Problem

Stanford

Data:

- Musculoskeletal model

Problem:

- Synthesize movement
- Approximate brain function

Problem

Stanford

Data:

- Musculoskeletal model

Problem:

- Synthesize movement
- Approximate brain function

Successes @ OpenAI

Stanford University

OpenSim in one slide

Stanford

$$
\begin{gathered}
S_{t+1}=M\left(S_{t}, a_{t}\right), \\
\text { where }
\end{gathered}
$$

S_{t} - state at time $t \in\{1, \ldots, T\}$
a_{t} - vector of muscle excitations
M - OpenSim model

Walking

Go as far as you can minimizing the cost

$$
\begin{aligned}
& \underset{\left\{a_{t}: t\right\}}{\arg } \max \sum_{t=1}^{T} v\left(S_{t}\right)-\tilde{c}\left(S_{t}\right) \\
& \text { s.t. } \forall_{t} S_{t}=M\left(S_{t-1}, a_{t}\right)
\end{aligned}
$$

One possible solution - policy gradient

Go as far as you can minimizing the cost

$$
\begin{gathered}
\underset{\theta}{\arg \max } \sum_{t=1}^{T} v\left(S_{t}\right)-\tilde{c}\left(S_{t}\right) \\
\text { s.t. } \forall_{t} S_{t}=M\left(S_{t-1}, P_{\theta}\left(S_{t-1}\right)\right)
\end{gathered}
$$

Installing OpenSim with python

```
$ conda create -n opensim-rl -c kidzik osim-rl
$ source activate opensim-rl
$
$ python
> from osim.env import RunEnv
>
> env = RunEnv(visualize=True)
> for i in range(500):
    observation = env.step(env.action_space.sample())
```


Standing

University

Standing penalized

Setup

State:

- Position/velocity of center of mass, toes, ankles, pelvis and head
- Joints angles/velocities/accelerations

Action:

- Activation of 18 muscles

Reward:

- Net Δ of pelvis - penalty on ligament forces

Signal @ 100 Hz

Walking 1 step

University

Walking 2 steps

The power of a smart crowd

NIPS 2017: Learning to Run

NIPS
 2017

Reinforcement learning environments with musculoskeletal models

25	45444	428	1596
Days left	Views	Participants	Submissions

Unlocking the mysteries of the brain and behavior

Z NVIDIA DEVELOPER

NEWS CENTER AI Accelerated Computing Robotics Smart Cities Autonomous Vehic

anaconda cloud
kidzik / packag

Conda
$\stackrel{\wedge}{\wedge} 20132$ total downloads

Social Europe

NVIDIA Sponsors "Learning to Run" AI Competition at NIPS 2017

September 8, 2017
Participants in the Neural Information Processing Systems (NIPS) conference
"Learning to Run" competition are vying for the chance to win an NVIDIA DGX
Station, the fastest personal supercomputer for researchers and data scientists.

MONE , NEWS 4 ACALYSSS , Multrmedu > ARTCCE
Multimedia
Watch: Computer-Generated Skeletons Run for Cerebral Palsy
Tony Palions
10 Augat 2017

chatbots

machine learning

Dueling Als compete in learning to walk, secretly manipulating images and more at NIPS

Dense but noisy

Rich but sparse
Expert but biased
Sparse Impute

One possible solution - policy gradient

- Let $P_{\theta}(s)$ be a parametric model of the policy
- Let $Q(s, a)$ be approximation of a state-action value
- Optimize $J(\theta)=Q\left(s, P_{\theta}(s)\right)$

