Collecting, Modeling and Predicting Human Gait Kinematics

Łukasz Kidziński

June 12, 2018

Collecting kinematic data

Collecting kinematic data

Collecting kinematic data

Problems:

- Expensive equipment
- An engineer needed
- A physical therapist needed
- Controlled lab environment

Therefore:

- Only a few visits in patient's life
- Function different outside of the lab

Getting the cadence

Cadence: true vs predicted

 $\rho = 0.6$

Getting the step length

Step length: true vs predicted

$$\hat{S} = 1.2H \cdot \frac{\max_t |x_{ank,L}(t) - x_{ank,R}(t)|}{\max_t |y_{ear,L}(t) - y_{ank,L}(t)|},$$

Getting the GDI

Objective:

A library for extracting meaningful biomechanic signals from videos

Modeling progression of gait pathology

Modeling progression of gait pathology

Dataset - Functional features

Dimensionality reduction

1. We reduce dimensionality using PCA.

age	PC1	PC2	PC3
5.8	33.5	-12.4	43.7
5.0	233.3	34.7	-25.4
6.9	-77.4	49.4	-67.1
9.4	29.3	8.2	-42.7
10.7	-26.2	1.8	31.6
6.3	-55.8	18.7	31.3
10.0	9.5	10.4	4.0
13.0	51.4	14.0	-4.6
5.9	47.4	18.0	0.4
9.8	35.9	21.1	-11.6
:	:	:	
L .	· ·		

2. We model each component as a function of age.

age	PC1	PC2	PC3	K	nee fl	exion-e	xtension	- comp	onen	it 1
5.8	33.5			500	8000					
5.0	233.3			200	-	5690 00 00	0			
6.9	-77.4				and a		0 00			
9.4	29.3			100	-	8898°	00000	0	0	
10.7	-26.2			Le			80°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	0		
6.3	-55.8			0 800	4			0 0		
10.0	9.5			-100				° °	0	
13.0	51.4			100	4	•890 • •8	° °	0		
5.9	47.4			-200	6.6	କ୍ଷ ଜୁଇନ୍ଟୁ ନ	0 0			
9.8	35.9				8000	0				
				-300)	20	40	60		80
L :	:				-	_ 2	age			20

2. We model each component as a function of age.

2. We model each component as a function of age.

3. We reconstruct the process.

age	PC1	PC2	PC3
4.08	0.49	-4.47	10.21
4.16	0.48	-4.42	10.09
4.24	0.48	-4.37	9.97
4.32	0.47	-4.32	9.85
4.40	0.46	-4.26	9.73
4.48	0.46	-4.21	9.61
4.56	0.45	-4.16	9.49
4.64	0.45	-4.11	9.38
4.72	0.44	-4.06	9.26
4.80	0.44	-4.00	9.14
:	:	:	:
	· ·	-	· _

Individual evolutions

Individual evolutions

Problem

Stanford University

Data:

For each patient $i \in \{1, ..., N\}$, observe n_i points $\{y_{i,1}, y_{i,2}, ..., y_{i,n_i}\}$ at age $\{t_{i,1}, t_{i,2}, ..., t_{i,n_i}\}$.

Problem:

Estimate individual curves $Y_i(t)$.

Problem

Stanford University

Data:

For each patient $i \in \{1, ..., N\}$, observe n_i points $\{y_{i,1}, y_{i,2}, ..., y_{i,n_i}\}$ at age $\{t_{i,1}, t_{i,2}, ..., t_{i,n_i}\}$.

Problem:

Estimate individual curves $Y_i(t)$.

Solution 1: Mixed-effect model

We assume

 $y_{i,\cdot} \sim \mathcal{N}(\mu_i + B_i \mathbf{w}_i, \sigma^2 I_{n_i}),$

where $\mathbf{w}_i \sim \mathcal{N}(0, \Sigma)$, $\Sigma \in \mathbb{R}^{K \times K}$.

Individual progressions

Solution 2: Low-rank model

We assume

$$y_{i,\cdot} \sim \mathcal{N}(\mu_i + B_i \mathbf{A} \mathbf{w}_i, \sigma^2 I_{n_i}),$$

where $\mathbf{w}_i \sim \mathcal{N}(0, \Sigma)$, $\Sigma \in \mathbb{R}^{D \times D}$, $A \in \mathbb{R}^{K \times D}$ and D < K.

New method based on matrix completion

Solution 3: Matrix completion

Stanford University

We want to fit

$$\sum_{i=1}^{N}\sum_{j=1}^{n_{i}}\|Y_{i}(t_{i,j})-y_{i,j}\|^{2}$$

Stanford University

 Ω - set of observed indices $P_{\Omega}(\cdot)$ - projection on observed subspace $\|A\|_{F}^{2}$ - sum of squared elements $\|A\|_{*}$ - sum of singular values

Mixed-effect model

 $\underset{W}{\arg\min} \|P_{\Omega}(WB'-Y)\|_{F}^{2}$

Sparse longitudinal completion

$$rgmin_{W,A} \| P_\Omega(WA'B'-Y) \|_F^2$$

Sparse longitudinal completion

 $\underset{W,A}{\arg\min} \|P_{\Omega}(WA'B'-Y)\|_{F}^{2} + \lambda \cdot \operatorname{rank}(A)$

Sparse longitudinal completion

 $\underset{W,A}{\arg\min} \|P_{\Omega}(WA'B'-Y)\|_{F}^{2} + \lambda \|A\|_{*}$

Sparse functional PCA fit

Sparse functional PCA fit

 $\underset{W,A}{\arg\min} \|P_{[\Omega,\Omega]}(W[A'_1,A'_2]B' \otimes I_2 - [Y_1,Y_2])\|_F^2 + \|[A'_1,A'_2]\|_*$

PCA plane in OpenSim

PCA plane in OpenSim

Predicting surgical outcome

Cerebral palsy

Problem

Data:

Musculoskeletal model

Problem:

- Synthesize movement
- Approximate brain function

Problem

Data:

Musculoskeletal model

Problem:

- Synthesize movement
- Approximate brain function

Successes @ OpenAl

OpenSim in one slide

$$S_{t+1} = M(S_t, a_t),$$
 where

 S_t - state at time $t \in \{1, ..., T\}$ a_t - vector of muscle excitations M - OpenSim model

Go as far as you can minimizing the cost

$$\underset{\{a_t:t\}}{\operatorname{arg\,max}}\sum_{t=1}^{T} v(S_t) - \tilde{c}(S_t)$$

s.t.
$$\forall_t S_t = M(S_{t-1}, a_t)$$

One possible solution – policy gradient

Go as far as you can minimizing the cost

Stanford

University

$$\arg\max_{\theta} \sum_{t=1}^{T} v(S_t) - \tilde{c}(S_t)$$

s.t. $\forall_t S_t = M(S_{t-1}, P_{\theta}(S_{t-1}))$

Installing OpenSim with python


```
$ conda create -n opensim-rl -c kidzik osim-rl
$ source activate opensim-rl
$
$ python
> from osim.env import RunEnv
> 
> env = RunEnv(visualize=True)
> for i in range(500):
```

> observation = env.step(env.action_space.sample())

Standing

Standing penalized

Setup

State:

- Position/velocity of center of mass, toes, ankles, pelvis and head
- Joints angles/velocities/accelerations

Action:

Activation of 18 muscles

Reward:

• Net Δ of pelvis – penalty on ligament forces

Signal @ 100Hz

Walking 1 step

Walking 2 steps

The power of a **smart** crowd

NIPS 2017: Learning to Run

38.549363

87

Sat. 23 Sep 2017 11:44

03. Anton Pechenko

chatbots

machine learning

Dueling Als compete in learning to walk, secretly manipulating images and more at NIPS

Dense but noisy

Rich but sparse

Expert but biased

One possible solution – policy gradient

- Let $P_{\theta}(s)$ be a parametric model of the policy
- Let Q(s, a) be approximation of a state-action value

Stanford

University

• Optimize $J(\theta) = Q(s, P_{\theta}(s))$