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Collecting kinematic data

Cons

Problems:

Expensive equipment

An engineer needed

A physical therapist needed

Controlled lab environment

Therefore:

Only a few visits in patient’s life

Function different outside of the
lab







Collecting kinematic data
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Collecting kinematic data

Getting the cadence
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Collecting kinematic data

Getting the step length

Ŝ = 1.2H ·
maxt |xank,L(t)− xank,R(t)|
maxt |year ,L(t)− yank,L(t)|
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Collecting kinematic data

Getting the GDI

ρ = 0.82



Collecting kinematic data

Objective:
A library for extracting meaningful biomechanic signals from videos



Modeling progression
of gait pathology



Modeling progression of gait pathology

Dataset - Functional features



Modeling progression of gait pathology PCA

Dimensionality reduction

1. We reduce dimensionality using PCA.

age PC1 PC2 PC3
5.8 33.5 −12.4 43.7
5.0 233.3 34.7 −25.4
6.9 −77.4 49.4 −67.1
9.4 29.3 8.2 −42.7

10.7 −26.2 1.8 31.6
6.3 −55.8 18.7 31.3

10.0 9.5 10.4 4.0
13.0 51.4 14.0 −4.6
5.9 47.4 18.0 0.4
9.8 35.9 21.1 −11.6

...
...

...





Modeling progression of gait pathology Modeling

Modelling

2. We model each component as a function of age.



age PC1 PC2 PC3
5.8 33.5
5.0 233.3
6.9 −77.4
9.4 29.3

10.7 −26.2
6.3 −55.8

10.0 9.5
13.0 51.4
5.9 47.4
9.8 35.9

...
...





Modeling progression of gait pathology Modeling

Modelling

2. We model each component as a function of age.



age PC1 PC2 PC3
5.8 −12.4
5.0 34.7
6.9 49.4
9.4 8.2

10.7 1.8
6.3 18.7

10.0 10.4
13.0 14.0
5.9 18.0
9.8 21.1

...
...





Modeling progression of gait pathology Modeling

Modelling

2. We model each component as a function of age.



age PC1 PC2 PC3
5.8 43.7
5.0 −25.4
6.9 −67.1
9.4 −42.7

10.7 31.6
6.3 31.3

10.0 4.0
13.0 −4.6
5.9 0.4
9.8 −11.6

...
...





Modeling progression of gait pathology Modeling

Modelling

3. We reconstruct the process.

age PC1 PC2 PC3
4.08 0.49 −4.47 10.21
4.16 0.48 −4.42 10.09
4.24 0.48 −4.37 9.97
4.32 0.47 −4.32 9.85
4.40 0.46 −4.26 9.73
4.48 0.46 −4.21 9.61
4.56 0.45 −4.16 9.49
4.64 0.45 −4.11 9.38
4.72 0.44 −4.06 9.26
4.80 0.44 −4.00 9.14

...
...

...
...





Modeling progression of gait pathology Individual progressions

Individual evolutions
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Modeling progression of gait pathology Individual progressions

Individual evolutions
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Modeling progression of gait pathology Individual progressions

Problem

Data:
For each patient i ∈ {1, ...,N},
observe ni points {yi ,1, yi ,2, ..., yi ,ni}
at age {ti ,1, ti ,2, ..., ti ,ni}.

Problem:
Estimate individual curves Yi (t).
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Modeling progression of gait pathology Individual progressions

Problem

Data:
For each patient i ∈ {1, ...,N},
observe ni points {yi ,1, yi ,2, ..., yi ,ni}
at age {ti ,1, ti ,2, ..., ti ,ni}.

Problem:
Estimate individual curves Yi (t).
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Modeling progression of gait pathology Individual progressions

Solution 1: Mixed-effect model

We assume

yi ,· ∼ N (µi + Biwi , σ
2Ini ),

where wi ∼ N (0,Σ), Σ ∈ RK×K .
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Modeling progression of gait pathology Individual progressions

Solution 2: Low-rank model

We assume

yi ,· ∼ N (µi + BiAwi , σ
2Ini ),

where wi ∼ N (0,Σ), Σ ∈ RD×D ,
A ∈ RK×D and D < K .
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Modeling progression of gait pathology New method based on matrix completion

Solution 3: Matrix completion

We want to fit

N∑
i=1

ni∑
j=1

‖Yi (ti ,j)− yi ,j‖2
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Modeling progression of gait pathology New method based on matrix completion

Solution 3: Matrix completion

Y

Ω - set of observed indices

PΩ(·) - projection on observed subspace

‖A‖2
F - sum of squared elements

‖A‖∗ - sum of singular values



Modeling progression of gait pathology New method based on matrix completion

Solution 3: Matrix completion

≈x

W B' Y

Mixed-effect model

arg min
W

‖PΩ(WB ′ − Y )‖2
F



Modeling progression of gait pathology New method based on matrix completion

Solution 3: Matrix completion

≈x x

W A' B' Y

Sparse longitudinal completion

arg min
W ,A

‖PΩ(WA′B ′ − Y )‖2
F



Modeling progression of gait pathology New method based on matrix completion

Solution 3: Matrix completion

≈x x

W A' B' Y

Sparse longitudinal completion

arg min
W ,A

‖PΩ(WA′B ′ − Y )‖2
F + λ · rank(A)



Modeling progression of gait pathology New method based on matrix completion

Solution 3: Matrix completion

≈x x

W A' B' Y

Sparse longitudinal completion

arg min
W ,A

‖PΩ(WA′B ′ − Y )‖2
F + λ‖A‖∗



Modeling progression of gait pathology New method based on matrix completion

Sparse functional PCA fit
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Modeling progression of gait pathology New method based on matrix completion

Sparse functional PCA fit
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Modeling progression of gait pathology New method based on matrix completion

Solution 3: Matrix completion

≈

x

xW

A1'
B'

Y1

Multivariate sparse longitudinal completion

≈x

A2'
B'

Y2

arg min
W ,A

‖P[Ω,Ω](W [A′1,A
′
2]B ′ ⊗ I2 − [Y1,Y2])‖2

F + ‖[A′1,A′2]‖∗



Modeling progression of gait pathology Why to model kinematics?

PCA plane in OpenSim



Modeling progression of gait pathology Why to model kinematics?

PCA plane in OpenSim



Predicting
surgical outcome



Predicting surgical outcome

Cerebral palsy



Predicting surgical outcome

Problem

Data:

Musculoskeletal model

Problem:

Synthesize movement

Approximate brain function



Predicting surgical outcome

Problem

Data:

Musculoskeletal model

Problem:

Synthesize movement

Approximate brain function



Predicting surgical outcome

Successes @ OpenAI



Predicting surgical outcome

OpenSim in one slide

St+1 = M(St , at),

where

St - state at time t ∈ {1, ...,T}
at - vector of muscle excitations

M - OpenSim model



Predicting surgical outcome

Walking

Go as far as you can minimizing the cost

arg max
{at :t}

T∑
t=1

v(St)− c̃(St)

s.t. ∀t St = M(St−1, at)



Predicting surgical outcome

One possible solution – policy gradient

Go as far as you can minimizing the cost

arg max
θ

T∑
t=1

v(St)− c̃(St)

s.t. ∀t St = M(St−1,Pθ(St−1))



Predicting surgical outcome Successes

Installing OpenSim with python

$ conda create -n opensim-rl -c kidzik osim-rl

$ source activate opensim-rl

$

$ python

> from osim.env import RunEnv

>

> env = RunEnv(visualize=True)

> for i in range(500):

> observation = env.step(env.action_space.sample())



Predicting surgical outcome Results

Standing



Predicting surgical outcome Results

Standing penalized



Predicting surgical outcome Results

Setup

State:

Position/velocity of center of mass, toes, ankles, pelvis and head

Joints angles/velocities/accelerations

Action:

Activation of 18 muscles

Reward:

Net ∆ of pelvis − penalty on ligament forces

Signal @ 100Hz



Predicting surgical outcome Results

Walking 1 step



Predicting surgical outcome Results

Walking 2 steps



Predicting surgical outcome Results

The power of a smart crowd



Predicting surgical outcome Results





Predicting surgical outcome #45



Predicting surgical outcome #38



Predicting surgical outcome #30



Predicting surgical outcome #23



Predicting surgical outcome Human-level performance



Predicting surgical outcome #10



Predicting surgical outcome #2



Predicting surgical outcome #1



Predicting surgical outcome Results



Predicting surgical outcome Results



Dense but noisy Rich but sparse
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One possible solution – policy gradient

Let Pθ(s) be a parametric model of the policy

Let Q(s, a) be approximation of a state-action value

Optimize J(θ) = Q(s,Pθ(s))
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