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SETI Institute — RFI Classification

Problem
Identify common RFI and prioritize follow-up measurements
for anomalous RFI — while having no labels

Solution
1. Unsupervised feature extraction + clustering
¥ 2. Cognitive-assisted interactive labeling

B Methods
Convolutlonal AutoEncodlng t- SNE

~1 Mllllon

Signal events
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Unsupervised RFI Classification

14 Million subband spectrogram/images
90-95% no signal

Reoccurring RFI is prevalent

~20 common types of RFI spectra

No labels
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RFI Spectrograms




RFI Spectrograms
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RFI Spectrograms
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RFI Clustering

Preliminary
feature
extraction
Density Cardinality
equalization determination

AutoEncoding Clustering



Spectrogram samples - Original density




Spectrogram samples — Equalized density (Stat+PCA)
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Spectrogram samples — Equalized density (Feature engineering)

.

L
NSNS a
T

J ‘ = .\\\
MR

—
-
-
-




RFI Clustering

Preliminary

feature
extraction

Density Cardinality
equalization determination

AutoEncoding Clustering



Convolutional Autoencoding: Architectures
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Autoencoding Comparison: Encoding Capacity

Convolutional

Dense Variational

Convolutional Variational
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t-SNE

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a (prize-winning)
technique for dimensionality reduction that is particularly well suited for
the visualization of high-dimensional datasets. The technique can be
implemented via Barnes-Hut approximations, allowing it to be applied on
large real-world datasets. We applied it on data sets with up to 30 million
examples. The technique and its variants are introduced in the following
papers:

e L.]J.P. van der Maaten. Accelerating t-SNE using Tree-Based
Algorithms. Journal of Machine Learning Research 15(0ct):3221-
3245, 2014. |5 PDF [Supplemental material]

e L.J.P. van der Maaten and G.E. Hinton. Visualizing Non-Metric
Similarities in Multiple Maps. Machine Learning 87(1):33-55, 2012.
PDF

e L.J.P. van der Maaten. Learning a Parametric Embedding by
Preserving Local Structure. In Proceedings of the Twelfth
International Conference on Artificial Intelligence & Statistics (Al-
STATS), JMLR W&CP 5:384-391, 2009. |5 PDF

e L.]J.P. van der Maaten and G.E. Hinton. Visualizing High-




SNE (2002) of MNIST
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Locally Linear Embedding
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Low-dimensional embedding
SNE t-SNE

_ exp (—|lyi —y;ll°) g = (1+HJ’i_J’jH2)_1 |
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Standard normal
distribution (Zdistribution)
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t-distribution




Gradient comparison

I1

10.5

Low—dimensional distance >
Low-dimensional distance >

High—dimensional distance > High—dimensional distance >

(a) Gradient of SNE. (c) Gradient of t-SNE.

From: van der Maaten, 2008



High-dimension & Similarity reproduction

High-dimensional input

cXp (—||xi —xj||2/202)
>t €Xp (—|Jxxe —x1][2/267%)°

Pij =

Reproduce similarities

C= Z PHQI Zzpﬂzlog iz
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Clustering: Qualitative inspection
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For n_clusters = 80 The average silhouette_scoreis: 0.45

Silhouette analysis for Ward with n_clusters = 80

The silhouette plot for the various clusters.

Cluster label
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The visualization of the clustered data.
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Cluster sample 1




Clusters sample 2
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Building the Software 2.0 Stack by Andrej
Karpathy from Tesla

June 8, 2018

Share f . 4 in
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Director of Al, Tesla
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Software 2.0

Program space

Software 1.0 —

Software 2.0

(Karpathy, 2017)



1.0 Software 1.0 is not

E .
| “-\\,0\96 > e v,-sv:a",‘;atbn, going anywhere...
0P Bagy, on,
AP Lt SGp, Dagabm'
o™\ -
e®
deployment package
20 [ w
Base B
J;‘;z:;m%?”"g

(Karpathy, 2017)



Software 2.0

Andrej Karpathy (2017)
Software 2.0:
- “Software written by optimization in the language of weights”
- Engineered systems (1.0) -> Learned systems (2.0)
- End-to-end optimized systems
- Model skeletons + optimizers + supervised data

- Data labelers are the programmers



One Model To Learn Them All

Fukasz Kaiser Aidan N. Gomez* Noam Shazeer
Google Brain University of Toronto Google Brain
lukaszkaiser@google.com aidan@cs.toronto.edu noam@google.com
Ashish Vaswani Niki Parmar Llion Jones Jakob Uszkoreit
Google Brain Google Research Google Research Google Research

avaswani@google.com nikip@google.com 1lion@google.com usz@google.com
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Toolchain for Software 2.0

Surrounding dataset/supervision infrastructure

IDE for Software 2.0 (Karpathy, 2017)

- Show full inventory/stats of current dataset

- Create/edit annotation layers for any datapoint

- Flag, escalate resolve discrepancies in multiple labels

- Flag, escalate datapoints thate are likely to be mislabeled
- Display predictions on an arbitrary set of test datapoints

- Autosuggest datapoints that should be labeled



Cognitive-assisted interactive labeling

Objectives

1. Visualize the quality of feature space

2. Define constraints/characteristics, could be through direct labeling
3. Update the feature space

Requirements

1. Iterative optimization

2. Dimensionality reduction for visualization

3. Fine-grained definition of sample characteristics
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TensorFIOW L Install Develop APIr1.4 Deploy Extend Community Versions

Develop

GET STARTED PROGRAMMER'S GUIDE TUTORIALS PERFORMANCE MOBILE

Getting Started TensorBoard: Visualizing Learning

Getting Started With TensorFlow

MNIST For ML Beginners The computations you'll use TensorFlow for - like training a massive deep neural network - can be complex and

Deep MNIST for Experts confusing. To make it easier to understand, debug, and optimize TensorFlow programs, we've included a suite of
TensorFlow Mechanics 101 visualization tools called TensorBoard. You can use TensorBoard to visualize your TensorFlow graph, plot quantitative
tf.estimator Quickstart metrics about the execution of your graph, and show additional data like images that pass through it. When TensorBoard
Building Input Functions with tf. is fully configured, it looks like this:

estimator

TensorBoard: Visualizing Learning
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‘medium.com/tensorflow/interactive-supervision-with-tensorboard-9a101c91d3f7
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Interactive Supervision with t-SNE
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Cognitive-assisted interactive labeling

Higher quality feature space means more homogeneous clusters
More homogeneous clusters means greater labeling efficiency
More labels means greater homogeneity

Edge cases and anomalies are obtained

Al A

Common classes defined
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[D] Suggestion by Salesforce chief data scientist biscussion (i.redd.it)

submitted 21 hours ago by Prooffread3r to r/MachinelLearning
72 comments share save hide report

Richard 2+ Follow
RichardSocher

Rather than spending a month figuring out an
unsupervised machine learning problem, just
label some data for a week and train a
classifier.
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Figure 1: Overview over the families of divergences and their relationship to each other. The shortcut Prob. denotes
the special case of probability densities. For sake of clarity we show the most important relations only and do not claim

completeness.



Digits

Ms.SNE

Fig. 6. Embeddings of all compared methods for Faces and Digits.



Barnes-Hut-SNE

Laurens van der Maaten
Pattern Recognition and Bioinformatics Group, Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands
lvdmaaten@gmail.com

Abstract

The paper presents an O(NN log N )-implementation of t-SNE — an embedding
technique that is commonly used for the visualization of high-dimensional data
in scatter plots and that normally runs in O(N?). The new implementation uses
vantage-point trees to compute sparse pairwise similarities between the input data
objects, and it uses a variant of the Barnes-Hut algorithm to approximate the forces
between the corresponding points in the embedding. Our experiments show that
the new algorithm, called Barnes-Hut-SNE, leads to substantial computational ad-
vantages over standard t-SNE, and that it makes it possible to learn embeddings
of data sets with millions of objects.



https://arxiv.org/pdf/1301.3342.pdf

4.2 Approximating t-SNE Gradients

To approximate the t-SNE gradient, we start by splitting the gradient into two parts as follows:

oC .
By, = 4(Fypir — Frep) = 4 ZPz‘j%‘jZ(}’z‘ - Y;) —ZQ‘%Z(M—}H) , (8)
" j#i j#i

where F;,, denotes the sum of all attractive forces (the left sum), whereas F,..,, denotes the sum of
all repulsive forces (the right sum). Computing the sum of all attractive forces, F,+;,, 1S computa-
tionally efficient; it can be done by summing over all non-zero elements of the sparse distribution P
in O(uN). (Note that the term ¢;;Z = (1 + [|y; — y;||*) " can be computed in O(1).) However, a
naive computation of the sum of all repulsive forces, F.p, is O(N?). We now develop a Barnes-Hut
algorithm to approximate Fi.., efficiently in O(N log N).

Consider three points y;, y;, and y, with ||y; —y;|| ~||yi — ¥«|| > ||y; — ¥ /||. In this situation, the
contributions of y; and y;, to F.¢, will be roughly equal. The Barnes-Hut algorithm [1] exploits this
by 1) constructing a quadtree on the current embedding, i1) traversing the quadtree using a depth-first
search, and iii) at every node in the quadtree, deciding whether the corresponding cell can be used
as a “summary” for the gradient contributions of all points in that cell.






Quadtree. A quadtree is a tree in which each
node represents a rectangular cell with a partic-
ular center, width, and height. Non-leaf nodes
have four children that split up the cell into four
smaller cells (quadrants) that lie “northwest”,
“northeast”, “southwest”, and ‘“southeast” of
the center of the parent node (see Figure 1 for
an 1illustration). Leaf nodes represent cells that
contain at most one point of the embedding; the
root node represents the cell that contains the
complete embedding. In each node, we store
the center-of-mass of the embedding points that
are located inside the corresponding cell, y e,
and the total number of points that lie inside the
cell, N.ej;. A quadtree has O(NV) nodes and can
be constructed in O(/N) time by inserting the
points one-by-one, splitting a leaf node when-
ever a second point is inserted in its cell, and
updating y..;; and Ny of all visited nodes.

Approximating the gradient. To approximate

the repulsive part of the gradient, Fi.,, we
mndmn Al e X C 11 . e e a1 o A Lk

https://arxiv.org/pdf/1301.3342.pdf

] -
[ HH
bR [
=i SRR - s
S| _"l_al"qd _f = =& °:E|">;
== e R - T T T3
SAmi: BN EmLE AR
PR P =an
i EREE
o b ° 5 |
1 5= e I FH - e B
—P«+[ "‘I_ _‘:F 2 —_| { ‘Il
: Ran T
tlf | |
e e o]
S = +
Emmm. &5 m S |+:t'_\+
T FEETN T
=F|+,°°i“'l
o#_ [ T4

Figure 1: Quadtree constructed on a two-
dimensional t-SNE embedding of 500 MNIST
digits (the colors of the points correspond to the
digit classes). Note how the quadtree adapts to
the local point density in the embedding.



http://proceedings.mlr.press/v32/yangel4.pdf

Optimization Equivalence of Divergences Improves Neighbor Embedding

Zhirong Yang?
Jaakko Peltonen®:*
Samuel Kaskil:3

ZHIRONG.YANG@ AALTO.FI
JAAKKO.PELTONEN@ AALTO.FI
SAMUEL.KASKI@ AALTO.FI

1Helsinki Institute for Information Technology HIIT, ?Department of Information and Computer Science, Aalto University,
Finland, ®Department of Computer Science, University of Helsinki, and *University of Tampere

Abstract

Visualization methods that arrange data objects
in 2D or 3D layouts have followed two main
schools, methods oriented for graph layout and
methods oriented for vectorial embedding. We
show the two previously separate approaches
are tied by an optimization equivalence, mak-
ing it possible to relate methods from the two
approaches and to build new methods that take
the best of both worlds. In detail. we prove a

1. Introduction

We address two research problems: nonlinear dimension-
ality reduction (NLDR) of vectorial data and graph layout.
In NLDR, given a set of data points represented with high-
dimensional feature vectors or a distance matrix between
such vectors, low-dimensional coordinates are sought for
each data point. In graph layout, given a set of nodes (ver-
tices) and a set of edges between node pairs, the task is to
place the nodes on a 2D or 3D display. Solutions to both
research problems are widely used in data visualization.
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Optimization Equivalence of Divergences Improves Neighbor Embedding

= A(Farer — Frep) =4 | > _pijai; Z(yi —y;) — »_ 45 2(yi — ¥3)
J#i J#1
amples). In contrast, ws-SNE uses edge repulsion to

handle such cases of imbalanced degrees. When the d;
are not uniform, ws-SNE behaves differently from con-
ventional s-SNE, which can be explained by its gradient

WS !Y!
= 6555 z pz.?qzj(y% ) cd; dqu-l_e(yz' — yj)s

wherec =}, pzj/(zw d;d, qzj) is the connection scalar,
and # = 0 for Gaussian q and § = 1 for Cauchy q. The
first term in the summation is for attraction of nodes and
the second for repulsion. Compared with the s-SNE gradi-
ent, the repulsion part is weighted by d;d; in ws-SNE. That
is, important nodes have extra repulsive force with the oth-
ers and thus tend to be placed farther. This edge-repulsion
strategy has been shown to be effective in graph drawing to
overcome the “crowding problem”, namely, many mapped
points becoming crowded in the center of the display.

http://proceedings.mlr.press/v32/yangel14.pdf

egy from Noack (2007), we insert weights M in the re-
pl.l]SiVC term: jweighted—EE(Y) Zz’j p?leyz’ _ ysz

A i Mijexp (—|lyi — y;)|%), where M;; = did;, and
the vector d measures importance of the nodes. We use
degree centrality as the measurement, i.e., d;=degree of the
i-th node. Jyeighea-re(Y ) has downsides: it needs a user-
set edge repulsion weight A, and is not invariant to scaling
of p. By Theorem 1 we create a corresponding improved

method, ws-SNE, minimizing a nonseparable divergence.

Proposition 5. Weighted EE is a separable divergence
minimizing method and its non-separable variant is ws-
SNE. Proof: Writing ¢;; = exp(—|ly; — y;]|?) with
gii = 0, we have Jyeigheare(Y) = Di(p||\M o
q) + F()\), where o denotes element-wise product and
F(A) = C(\) + ). ;;pijlndid; is a constant to
Y. In the final and most important step, by a spe-
cial case of Theorem 1: argminy Dy (p||M o q) =
arg miny [miny>g Di(p||AM o g)|, we obtain a new vari-
ant of SNE which minimizes Dy (p||M o q) over Y:

e SNE(Y szj In qi; + In Z quw -+ constant
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