

Learning to find good correspondences

K.M. Yi, E. Trulls, Y. Ono, V. Lepetit, M. Salzmann, P. Fua CVPR 2018 (Salt Lake City, UT, USA)

Local features matter

Keypoints provide us with a robust way to match points across images.

Local features matter

Keypoints: location (x, y), orientation, scale.

Descriptors: histograms of gradient orientations.

Source: http://medium.com/machine-learning-world/feature-extraction-and-similar-image-search-with-opency-for-newbies-3c59796bf774

Local features matter

Matching large numbers of local features allows us to recover structure!

Source: OpenIMAJ (http://openimaj.org)

Why should I care?

Kluwer Academic Publishers. Boston

David Lowe

Computer Science Dept., <u>University of British Columbia</u>
Verified email at cs.ubc.ca - <u>Homepage</u>
Computer Vision Object Recognition

✓ FOLLOW

TITLE CITED BY **YEAR** (journal paper) Distinctive image features from scale-invariant keypoints 48135 2004 64k citations! International journal of computer vision 60 (2), 91-110 (conference paper)
Object recognition from local scale-invariant features 15815 1999 International Conference on Computer Vision, 1999, 1150-1157 Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration. 2463 2009 M Muja, DG Lowe VISAPP (1) 2, 331-340 Automatic panoramic image stitching using invariant features 2015 2007 M Brown, DG Lowe International Journal of Computer Vision 74 (1), 59-73 Perceptual Organization and Visual Recognition 1811 1985 DG Lowe

Applications: panorama stitching

Source: http://karantza.org/wordpress/?p=10

Applications: 3D reconstruction

Applications: camera pose retrieval

Source: S.M. Yoon et al, Hierarchical image representation using 3D camera geometry for content-based image retrieval, EAAI 2014.

What about Deep Learning?

Recent works by the Computer Vision lab at EPFL:

- TILDE: A Temporally Invariant Learned DEtector (CVPR'15).
- Discriminative learning of descriptors (ICCV'15).
- Learning to assign orientations to feature points (CVPR'16).
- LIFT: Learned Invariant Feature Transform (ECCV'16).
- Learning to find good correspondences (CVPR'18).
- LF-Net: Learning local features from images (arxiv'18).

What about Deep Learning?

Recent works by the Computer Vision lab at EPFL:

- TILDE: A Temporally Invariant Learned DEtector (CVPR'15).
- Discriminative learning of descriptors (ICCV'15).
- Learning to assign orientations to feature points (CVPR'16).
- LIFT: Learned Invariant Feature Transform (ECCV'16).
- Learning to find good correspondences (CVPR'18).

• LF-Net: Learning local features from images (arxiv'18).

Matching keypoints

(c) Retrieve pose

(a) Find putative matches

(b) Find inliers (e.g. RANSAC)

Fischler & Bolles, "Random Sample Consensus". Comm. ACM, 1981

Dense matching with CNNs

- Current focus of research:
 - ❖ Zamir et al, ECCV'16.
 - ❖ SfM-Net, arxiv'17.
 - ❖ DeMoN, CVPR'17.
 - ♣ Lowe et al, CVPR'17.
- Focus: video, small displacements.

Where's the challenge?

RANSAC: not always enough

Geometry to the rescue

Geometry to the rescue

Computing the Essential matrix

Closed form solution: 8-point algorithm

N correspondences

Longuet-Higgins, "A computer algorithm for reconstructing a scene from two projections". Nature, 1981.

Learning to compute weights

We learn to compute weights for the 8-point algorithm

Learning to compute weights

We learn to compute weights for the 8-point algorithm

N correspondences

Learning to compute weights

We learn to compute weights for the 8-point algorithm

Exploiting epipolar geometry

We do not have dense depth data. But we have the **ground truth camera poses.** With **epipolar geometry** we know that points in image 1 map to lines in image 2.

Source: wikipedia (https://en.wikipedia.org/wiki/Epipolar_geometry)

Adding a classification loss

Not perfect (point ↔ line)! But good enough for a supervision signal.

Hartley & Zisserman, "Multiple view geometry in computer vision", 2000.

Complete formulation

We jointly train for outlier rejection and regression to the Essential matrix by minimizing the hybrid loss:

$$\mathcal{L}(\Phi) = \sum_{k=1}^{P} (\alpha \mathcal{L}_x(\Phi, \mathbf{x}_k) + \beta \mathcal{L}_e(\Phi, \mathbf{x}_k))$$

$$= \sum_{k=1}^{P} (\alpha \mathcal{L}_x(\Phi, \mathbf{x}_k) + \beta \mathcal{L}_e(\Phi, \mathbf{x}_k))$$
(Inliers vs outliers)

Regression (which inliers help us retrieve E?)

Our network

- Input: putative matches (SIFT+NN). Coordinates only: $\{u,v,u',v'\}^{1\leq i\leq N}$
- Output: Weights, encoding inlier probability.
- Network: MLPs. Global context embedded via Context Normalization.

Embedding context

- Non-parametric normalization of the mean/std of feature maps.
- Applied over each image pair in the batch separately.
- Also known as Instance Norm, used in image stylization.

Results

Train on only **two sequences:** one indoors & one outdoors (10k pairs from each):

(ii) Brown (video, 8k images)

Test on **completely different** sequences (1k pairs from each):

Results

Outdoors: great performance. Indoors: slightly better than dense methods.

Collaborators

Kwang Yi (U. Victoria)

Eduard Trulls (EPFL)

Yuki Ono (Sony)

Mathieu Salzmann (EPFL)

Vincent Lepetit (U. Bordeaux)

Pascal Fua (EPFL)

Code and models: github.com/vcg-uvic/learned-correspondence-release

Thanks for your attention. Questions?

