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Learning to find good correspondences
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L ocal features matter

Keypoints provide us with a robust way to match points across images.



L ocal features matter
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Image gradients Keypoint descriptor

Keypoints: location (x, y), orientation, scale.
Descriptors: histograms of gradient orientations.

Source: http://medium.com/machine-learning-world/feature-extraction-and-similar-image-search-with-opencv-for-newbies-3c59796bf774




Matching large numbers of local features allows us to recover structure!

Source: OpenlMAJ (http://openimaj.org)




SIFT

Why should | care?

David Lowe FOLLOW

Computer Science Dept., University of British Columbia
Verified email at cs.ubc.ca - Homepage

Computer Vision Object Recognition

TITLE CITED BY YEAR

(journal paper)
Distinctive image features from scale-invariant keypoints
DG Lowe

2004

International journal of computer vision 60 (2), 91-110 64k -t t- '
| ! conference paper) ‘ criations!
Object recognition from local scale-invariant features 1999
DG Lowe
International Conference on Computer Vision, 1999, 1150-1157
Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration. 2463 2009
M Muja, DG Lowe
VISAPP (1) 2, 331-340
Automatic panoramic image stitching using invariant features 2015 2007
M Brown, DG Lowe
International Journal of Computer Vision 74 (1), 59-73
*
Perceptual Organization and Visual Recognition 1811 1985

DG Lowe
Kluwer Academic Publishers, Boston



Applications: panorama stitching

Source: http://karantza.org/wordpress/?p=10




plications: 3D reconstruction




Applications: camera pose retrieval

Source: S.M. Yoon et al, Hierarchical image representation using 3D camera geometry for content-based image retrieval, EAAI 2014.



What about Deep Learning?

Recent works by the Computer Vision lab at EPFL:

e TILDE: A Temporally Invariant Learned DEtector (CVPR’15).
 Discriminative learning of descriptors (ICCV’'15).

* Learning to assign orientations to feature points (CVPR’16).
e LIFT: Learned Invariant Feature Transform (ECCV’16).

* | earning to find good correspondences (CVPR’18).

* LF-Net: Learning local features from images (arxiv’'18).
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atching keypoints
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(a) Find putative matches (b) Find inliers (e.g. RANSAC)

Fischler & Bolles, “Random Sample Consensus”. Comm. ACM, 1981



Dense matching with CNNs

e Current focus of research:
<+ Zamir et al, ECCV’16.
<+ SfM-Net, arxiv’17.
<+ DeMoN, CVPR’17.
<+ Lowe et al, CVPR’17.

e Focus: video, small displacements.

« General case (wide baselines) remains unsolved.



Where's the challenge?
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Geometry to the rescue




Geometry to the rescue

™
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A geometrically-aware deep network.
® Input: correspondences.
e Output: one weight for each.

We simultaneously learn to:
® Perform outlier rejection.
® Regress to the essential matrix.
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Computing the Essential matrix

Closed form solution: 8-point algorithm

Nx9 matrix

/ /
o0 o W 9x9 matrix

Essential

T
X' X Matrix

N correspondences

Longuet-Higgins, "A computer algorithm for reconstructing a scene from two projections”. Nature, 1981.



Learning to compute weights

We learn to compute weights for the 8-point algorithm

Nx9 matrix
{uu', wo’,u, ..} 9x9 matrix
>
Nx1 weights

Deep Net

N correspondences



L earning to compute weights

We learn to compute weights for the 8-point algorithm

Nx9 matrix

{wd!, w'u, ) 9x9 matrix

X

Fully differentiable! Nx1 weights

— <~ Net

N correspondences



L earning to compute weights

Deep Net

N correspondences



Exploiting epipolar geometry

Left view Right view

We do not have dense depth data. But we have the ground truth camera poses.
With epipolar geometry we know that points in image 1 map to lines in image 2.

Source: wikipedia (https://en.wikipedia.org/wiki/Epipolar_geometry)




Adding a classitication loss

Not perfect (point < line)! But good enough for a supervision signal.

Hartley & Zisserman, “Multiple view geometry in computer vision”, 2000.



Complete tormulation

We jointly train for outlier rejection and regression to the
Essential matrix by minimizing the hybrid loss:

P

L(®) = (aly(P,x;) + BLAP, X))

k=1 Classification Regression
(Inliers vs outliers) (which inliers help us
retrieve E?)




Our network
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+ Input: putative matches (SIFT+NN). Coordinates only: {u, v, u/,v'}'='=N

e Output: Weights, encoding inlier probability.
* Network: MLPs. Global context embedded via Context Normalization.



Embedding context

BTV CONTEXT NORM

* Non-parametric normalization of

the mean/std of feature maps. 1
0
Q
o
« Applied over each image pair in o
the batch separately. E_
7))
Qo
 Also known as Instance Norm, =
used in image stylization. ©
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Coords: {u, v, v, v/ }1==N



Results

Train on only two sequences: one indoors & one outdoors (10k pairs from each):

/id




Results
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Outdoors: great performance. Indoors: slightly better than dense methods.
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Kwang Yi Eduard Trulls Yuki Ono Mathieu Salzmann Vincent Lepetit Pascal Fua
(U. Victoria) (EPFL) (Sony) (EPFL) (U. Bordeaux) (EPFL)

Code and models: github.com/vcg-uvic/learned-correspondence-release




Thanks for your attention.

Questions?




